Reputation: 448
Say, we want to introduce the notion of sum of functions of different arguments (let's call it <+>
), which behaves like the that: (f1 <+> f2)(x1, x2) == f1(x1) + f2(x2)
.
While this can be easily written out manually, it makes sense to use point-free style with the help of the notion of cartesian product of functions. The latter is defined below and seems alright and quite general to me:
x :: (x1 -> y1) -> (x2 -> y2) -> (x1 -> x2 -> (y1, y2))
x f1 f2 = \x1 x2 -> (f1(x1), f2(x2))
Then we can write:
(<+>):: Num a => (a -> a) -> (a -> a) -> (a -> a -> a)
(<+>) = (uncurry (+)) . x
And the code above seems fine to me too, but GHC thinks otherwise:
* Couldn't match type: (x20 -> y20) -> a -> x20 -> (a, y20)
with: ((a -> a) -> a -> a -> a, (a -> a) -> a -> a -> a)
Expected: (a -> a)
-> ((a -> a) -> a -> a -> a, (a -> a) -> a -> a -> a)
Actual: (a -> a) -> (x20 -> y20) -> a -> x20 -> (a, y20)
* Probable cause: `x' is applied to too few arguments
In the second argument of `(.)', namely `x'
In the expression: (uncurry (+)) . x
In an equation for `<+>': (<+>) = (uncurry (+)) . x
* Relevant bindings include
(<+>) :: (a -> a) -> (a -> a) -> a -> a -> a
It feels like the compiler cannot infer the second function's type, but why? And what am I supposed to do, is this even possible to do?
Upvotes: 1
Views: 94
Reputation: 71109
Define
compose2 :: (b -> c -> t) -> (a -> b) -> (d -> c) -> a -> d -> t
compose2 p f g x y = p (f x) (g y)
Now, compose2 (+)
is your <+>
:
> :t compose2 (+)
compose2 (+) :: Num t => (a -> t) -> (d -> t) -> a -> d -> t
As you can see its type is a bit more general than you thought.
compose2
already exists.
Upvotes: 1
Reputation: 153102
If you supply two arguments, you will see what has gone wrong.
(<+>) = uncurry (+) . x
(<+>) a = (uncurry (+) . x) a
= uncurry (+) (x a)
(<+>) a b = uncurry (+) (x a) b
Whoops! That b
gets passed to uncurry
as a third argument, rather than x
as a second argument as you probably intended. The third and fourth arguments are also supposed to go to x
rather than uncurry
, as in:
(<+>) a b c d = uncurry (+) (x a b c d)
Here's the correct way to point-free-ify a four-argument composition.
\a b c d -> f (g a b c d)
= \a b c d -> (f . g a b c) d
= \a b c -> f . g a b c
= \a b c -> ((.) f . g a b) c
= \a b -> (.) f . g a b
= \a b -> ((.) ((.) f) . g a) b
= \a -> (.) ((.) f) . g a
= \a -> ((.) ((.) ((.) f)) . g) a
= (.) ((.) ((.) f)) . g
Most people then write this with section syntax as (((f .) .) .) . g
. Applying this new fact to your case:
\a b c d -> uncurry (+) (x a b c d)
= (((uncurry (+) .) .) .) . x
Upvotes: 3
Reputation: 10645
The .
operator is only for composing functions with a single argument, but the function x
has four arguments, so you have to use .
four times:
(<+>) = (((uncurry (+) .) .) .) . x
Do keep in mind that this is not considered good style in actual code.
Upvotes: 2