Hufh294
Hufh294

Reputation: 89

Create compiler error when constructor input contains duplicates

Consider the following classes:

class Base {
public:
    Base(const std::initializer_list<const char*>& words) 
        : words_(words) {}
    std::initializer_list<const char*> words_;
};

class Derived_OK : public Base
{
public:
    Derived_OK()
        : Base({ "dog", "car", "time"}){}

};

I would like to disallow derived classes from the Base class where the initializer list contains duplicates by creating a compile time error. For example the following class should not be allowed:

class Derived_BAD : public Base
{
public:
    Derived_BAD()
        : Base({ "dog", "car", "time", "car"}){} // do not want to allow duplicates at compile time

};

My initial approach was to try templating the Base class. However, as far as I have determined I cannot use non-type template parameters, even in C++20 where a string can be passed as a parameter (I believe you can pass only one string in the C++20 approach).

My next approach was to write a constexpr function to determine if the words are unique

constexpr bool unique_words(const std::initializer_list<const char*>& words);

and then rewrite the Base class as follows:

class Base {
public:
    constexpr Base(const std::initializer_list<const char*>& words) 
        : words_(words)
    {
        static_assert(unique_words(words));
    }
    std::initializer_list<const char*> words_;
};

Although this function works outside of the class, inside of the Base constructor the compiler tells me that I cannot use the value of the constructor parameter as a constant. Of course, I could write a run time check, but I really want to discourage creating duplicate words in the initializer list at compile time. Is this possible?

Upvotes: 2

Views: 192

Answers (2)

Ruks
Ruks

Reputation: 3956

My initial approach was to try templating the Base class. However, as far as I have determined I cannot use non-type template parameters, even in C++20 where a string can be passed as a parameter (I believe you can pass only one string in the C++20 approach).

Well, certainly you can have more than one string as a non-type template parameter in C++20.

Essentially, what you could do is have a little wrapper class called fixed_string which is implicitly convertible to and from a const char*. And since C++20, one can have trivial structs as non-type template parameters because of which one can use this lightweight wrapper class as a non-type template parameter.

Here is a C++20 implementation which can be used to achieve what you want to do:

#include <cstddef>
#include <type_traits>

// The wrapper class in question
template <std::size_t N>
struct fixed_string {
    char str[N + 1] {};
    constexpr fixed_string(const char* X) {
        for (std::size_t i = 0; i < N; i++)
            str[i] = X[i];
    }
    constexpr operator const char*() const {
        return str;
    }
};
template <std::size_t N>
fixed_string(const char (&)[N]) -> fixed_string<N - 1>;

// Stores a list of 'fixed_string's
template <fixed_string ...Strings>
struct fixed_string_list;

// Concatenates two 'fixed_string_list's together
template <typename, typename>
struct fixed_string_list_concat;

template <fixed_string ...Strings1, fixed_string ...Strings2>
struct fixed_string_list_concat<fixed_string_list<Strings1...>, fixed_string_list<Strings2...>> {
    using type = fixed_string_list<Strings1..., Strings2...>;
};

// Fetches the string at the specified index in the 'fixed_string_list', the required string is put inside a 'fixed_string_list' and then returned back
template <typename, std::size_t>
struct fixed_string_list_get;

template <std::size_t I, fixed_string String1, fixed_string ...Strings>
struct fixed_string_list_get<fixed_string_list<String1, Strings...>, I> {
    using type = typename fixed_string_list_get<fixed_string_list<Strings...>, I - 1>::type;
};

template <fixed_string String1, fixed_string ...Strings>
struct fixed_string_list_get<fixed_string_list<String1, Strings...>, 0> {
    using type = fixed_string_list<String1>;
};

// Trims the list in the range [From, To)
template <typename, std::size_t, std::size_t>
struct fixed_string_list_trim;

template <std::size_t From, std::size_t To, fixed_string ...Strings>
requires (From < To)
struct fixed_string_list_trim<fixed_string_list<Strings...>, From, To> {
    using type = typename fixed_string_list_concat<typename fixed_string_list_get<fixed_string_list<Strings...>, From>::type, typename fixed_string_list_trim<fixed_string_list<Strings...>, From + 1, To>::type>::type;
};

template <std::size_t From, std::size_t To, fixed_string ...Strings>
requires (From >= To)
struct fixed_string_list_trim<fixed_string_list<Strings...>, From, To> {
    using type = fixed_string_list<>;
};

// Returns the 'fixed_string_list' excluding the string at the specified index
template <typename, std::size_t>
struct fixed_string_list_exclude;

template <std::size_t I, fixed_string ...Strings>
requires (I > 0 && I < sizeof...(Strings) - 1)
struct fixed_string_list_exclude<fixed_string_list<Strings...>, I> {
    using type = typename fixed_string_list_concat<typename fixed_string_list_trim<fixed_string_list<Strings...>, 0, I>::type, typename fixed_string_list_trim<fixed_string_list<Strings...>, I + 1, sizeof...(Strings) - I + 1>::type>::type;
};

template <std::size_t I, fixed_string ...Strings>
requires (I == 0)
struct fixed_string_list_exclude<fixed_string_list<Strings...>, I> {
    using type = typename fixed_string_list_trim<fixed_string_list<Strings...>, 1, sizeof...(Strings)>::type;
};

template <std::size_t I, fixed_string ...Strings>
requires (I == sizeof...(Strings) - 1)
struct fixed_string_list_exclude<fixed_string_list<Strings...>, I> {
    using type = typename fixed_string_list_trim<fixed_string_list<Strings...>, 0, I>::type;
};

// Checks whether a 'fixed_string_list' contains a given string, the string to be found must also be within a 'fixed_string_list'
template <typename, typename>
struct fixed_string_list_contains;

template <fixed_string String, fixed_string ...Strings>
struct fixed_string_list_contains<fixed_string_list<Strings...>, fixed_string_list<String>> : std::bool_constant<((String == Strings) || ...)> {};

// Implementation detail for 'is_fixed_string_list_unique'
template <typename, std::size_t, std::size_t>
struct is_fixed_string_list_unique_impl;

template <std::size_t I, std::size_t Limit, fixed_string ...Strings>
struct is_fixed_string_list_unique_impl<fixed_string_list<Strings...>, I, Limit> : std::bool_constant<!fixed_string_list_contains<typename fixed_string_list_exclude<fixed_string_list<Strings...>, I>::type, typename fixed_string_list_get<fixed_string_list<Strings...>, I>::type>::value && is_fixed_string_list_unique_impl<fixed_string_list<Strings...>, I + 1, Limit>::value> {};

template <std::size_t I, fixed_string ...Strings>
struct is_fixed_string_list_unique_impl<fixed_string_list<Strings...>, I, I> : std::true_type {};

// Checks whether the given 'fixed_string_list' has no repeating strings inside
template <typename>
struct is_fixed_string_list_unique;

template <fixed_string ...Strings>
requires (sizeof...(Strings) > 1)
struct is_fixed_string_list_unique<fixed_string_list<Strings...>> : std::bool_constant<is_fixed_string_list_unique_impl<fixed_string_list<Strings...>, 0, sizeof...(Strings)>::value> {};

template <fixed_string ...Strings>
requires (sizeof...(Strings) <= 1)
struct is_fixed_string_list_unique<fixed_string_list<Strings...>> : std::true_type {};

Now you can finally do something like this:

template <fixed_string ...Strings>
struct Base {
    static_assert(is_fixed_string_list_unique<fixed_string_list<Strings...>>(), "Duplicate strings are not allowed!");
};

struct Derived_OK : public Base<"dog", "car", "time"> {};

// Results in a static assertion failure: "Duplicate strings are not allowed!"
struct Derived_BAD : public Base<"dog", "car", "time", "car"> {};

Here's a link where you can try it out for yourself:

Demo

Upvotes: 1

KamilCuk
KamilCuk

Reputation: 141748

To check anything, you have to constexpr construct the class. To trigger compile-time error inside constexpr function, you could throw, see Generate compile-time error if compile-time-constant parameter is wrong .

#include <initializer_list>
#include <type_traits>
#include <array>
#include <stdexcept>

template<std::size_t N>
constexpr bool unique_words(const std::array<const char*, N>& words) {
    // TODO: implement real logic here
    return words[0][0] == 'd';
}

template<std::size_t N>
struct Base {
    constexpr Base(const std::array<const char*, N>& words) 
        : words_(words)
    {
        if (!unique_words<N>(words)) {
             throw std::invalid_argument("Base must take unique words!");
        }
    }
    std::array<const char*, N> words_;
};


struct Derived_BAD : public Base<4> {
    constexpr Derived_BAD() : Base{{"e", "car", "time", "car"}} {}
};

int main() {
    constexpr Derived_BAD var; // compile-time error - can't throw in constexpr
    Derived_BAD var2; // will throw at runtime
}

Do not store std::initializer_list in your class!! See using std::initializer_list as a member variable .

It's not possible to compile-time check when not constructing constexpr. If you really want to check such cases, you can use GNU __builtin_constant_p extension and enable compiler optimizations, see GNU documentation and Enable static checks for constant evaluation and How to get a compile time error in constant evaluated expression? .

Upvotes: 1

Related Questions