Reputation: 51
I have a xml file: 'product.xml' that I want to read using pandas, here is an example of the sample file:
<?xml version="1.0"?>
<Rowset>
<ROW>
<Product_ID>32</Product_ID>
<Company_ID>2</Company_ID>
<User_ID>90</User_ID>
<Product_Type>1</Product_Type>
<Application_ID>BBC#:1010</Application_ID>
</ROW>
<ROW>
<Product_ID>22</Product_ID>
<Company_ID>4</Company_ID>
<User_ID>190</User_ID>
<Product_Type>2</Product_Type>
<Application_ID>NBA#:1111</Application_ID>
</ROW>
<ROW>
<Product_ID>63</Product_ID>
<Company_ID>4</Company_ID>
<User_ID>99</User_ID>
<Product_Type>1</Product_Type>
<Application_ID>BBC#:1212</Application_ID>
</ROW>
<ROW>
<Product_ID>22</Product_ID>
<Company_ID>2</Company_ID>
<User_ID>65</User_ID>
<Product_Type>2</Product_Type>
<Application_ID>NBA#:2210</Application_ID>
</ROW>
I am trying to generate a 2D Table using pandas like:
Application ID Product Type Product ID
BBC#:1010 1 32
NBA#:1111 2 22
BBC#:1212 1 63
NBA#:2210 2 22
so far, I have tried this code:
import xml.etree.cElementTree as ET
import pandas as pd
import pandas_read_xml as pdx
df = pdx.read_xml('product.xml')
path='product.xml'
dfcols = ['Application_ID', 'Product_Type', 'Product_ID']
root = et.parse(path)
rows = root.findall('.//ROW')
#NESTED LIST
xml_data = [[row.get('Application_ID'), row.get('Product_Type'), row.get('Product_ID')] for row in rows]
df_xml = pd.DataFrame(xml_data, columns=dfcols)
print(df_xml)
How can I print that type of 2D Table?, please help, Thank you.
Upvotes: 3
Views: 13743
Reputation: 491
As of Pandas 1.3.0 there is a read_xml()
function that makes working with reading/writing XML data in/out of pandas much easier.
Once you upgrade to Pandas >1.3.0 you can simply use:
df = pd.read_xml("___XML_FILEPATH___")
print(df)
(Note that in the XML sample above the <Rowset>
tag needs to be closed)
Upvotes: 2
Reputation: 120559
Use []
to filter and reorganize columns:
cols = ['Application_ID', 'Product_Type', 'Product_ID']
df = pd.read_xml('product.xml')[cols]
print(df)
# Output:
Application_ID Product_Type Product_ID
0 BBC#:1010 1 32
1 NBA#:1111 2 22
2 BBC#:1212 1 63
3 NBA#:2210 2 22
If you want to replace '_'
from your column names by ' '
:
df.columns = df.columns.str.replace('_', ' ')
print(df)
# Output:
Application ID Product Type Product ID
0 BBC#:1010 1 32
1 NBA#:1111 2 22
2 BBC#:1212 1 63
3 NBA#:2210 2 22
Upvotes: 2