Reputation: 425
I have a shape file of towns in the north of Spain that I have to join into groups (municipalities or comarcas in Spanish). I've used st_union from the sf package to join them successfully (and each one is their own SpatialPolygonsDataFrame object with a single polygon). I plot each of the municipalities individually and they look fine.
However, once I want to combine the municipalities into a single SpatialPolygonsDataFrame object with multiple polygons, I can't for the life of me manage to do it. I've tried three approaches mostly based on this answer: https://gis.stackexchange.com/questions/155328/merging-multiple-spatialpolygondataframes-into-1-spdf-in-r and this one https://gis.stackexchange.com/questions/141469/how-to-convert-a-spatialpolygon-to-a-spatialpolygonsdataframe-and-add-a-column-t
– If I use raster::union it throws out the error
Error in .rowNamesDF<-
(x, value = value) : invalid 'row.names' length
– If I use a simple rbind it throws out the error
Error in SpatialPolygonsDataFrame(pl, df, match.ID = FALSE) :
Object length mismatch:
pl has 7 Polygons objects, but df has 4 rows
Or something similar for 6/11 of the municipalities.
– If I try a lapply approach (more convoluted) it seems to work but one I plot it using leaflet the municipalities that gave the error when trying to raster::union or rbind don't look as they should/don't look as they do when I plot them individually.
** Municipalities 1 and 2 work fine. 3 and 4 for example do not. **
Here's a link to the two files needed to reproduce my code below: – Link to shape files: https://www.dropbox.com/sh/z9632hworbbchn5/AAAiyq3f_52azB4oFeU46D5Qa?dl=0 – Link to xls file that contains the mapping from towns to municipalities: https://www.dropbox.com/s/4w3fx6neo4t1l3d/listado-comarcas-gipuzkoa.xls?dl=0
And my code:
library(tidyverse)
library(magrittr)
library(sf)
library(ggplot2)
library(lwgeom)
library(readxl)
library(raster)
#Read shapefile
mapa_municip <- readOGR(dsn = "UDALERRIAK_MUNICIPIOS/UDALERRIAK_MUNICIPIOS.shp")
mapa_municip <- spTransform(mapa_municip, CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0'))
mapa_municip <- st_as_sf(mapa_municip)
#Read excel that contains mapping from town to municioalities
muni2com <- read_excel("listado-comarcas-gipuzkoa.xls",
sheet=1,
range="A1:C91",
col_names = T)
comarcas <- list()
count <- 0
for (i in unique(muni2com$Comarca)[1:4]){
count <- count + 1
for (k in unique(muni2com$Municipios[muni2com$Comarca==i])){
if (k == unique(muni2com$Municipios[muni2com$Comarca==i])[1]){ # if 1st case, keep this town
temp <- mapa_municip[mapa_municip$MUNICIPIO==k,]
}
if (k != unique(muni2com$Municipios[muni2com$Comarca==i])[1]){ # otherwise, join w previous ones
temp <- sf::st_union(temp, mapa_municip[mapa_municip$MUNICIPIO==k,])
}
}
comarcas[[count]] <- spTransform(as(temp, "Spatial"), CRS('+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0'))
comarcas[[count]]@data <- data.frame(comarca = i)
}
IDs <- sapply(comarcas, function(x)
slot(slot(x, "polygons")[[1]], "ID"))
#Checking
length(unique(IDs)) == length(comarcas)
dfIDs <- data.frame(comarca = IDs)
#Making SpatialPolygons from list of polygons
comarcas2 <- SpatialPolygons(lapply(comarcas,
function(x) slot(x, "polygons")[[1]]))
# Try to coerce to SpatialPolygonsDataFrame (will throw error)
p.df <- data.frame( comarca = unique(muni2com$Comarca)[1:4])
p <- SpatialPolygonsDataFrame(comarcas2, p.df)
# Extract polygon ID's
( pid <- sapply(slot(comarcas2, "polygons"), function(x) slot(x, "ID")) )
# Create dataframe with correct rownames
( p.df <- data.frame( comarca = unique(muni2com$Comarca)[1:4], row.names = pid) )
# Try coertion again and check class
comarcas3 <- SpatialPolygonsDataFrame(comarcas2, p.df)
class(comarcas3)
#Leaflet map
leaflet( options = leafletOptions(zoomControl = F,
zoomSnap = 0.1 ,
zoomDelta = 1
),
data = comarcas3,
) %>%
addProviderTiles(provider="CartoDB.Positron") %>%
htmlwidgets::onRender("function(el, x) {
L.control.zoom({ position: 'topright' }).addTo(this)
}") %>%
clearShapes() %>%
addPolygons(fillColor = "gray",
opacity = 0.8,
weight = 0.3,
color = "white",
fillOpacity = 0.95,
smoothFactor = 0.5,
label = ~comarca,
highlight = highlightOptions(
weight = 1.5,
color = "#333333",
bringToFront = T),
layerId = ~comarca
)
** Note how if you plot comarcas[[3]] or comarcas[[4]] above instead of comarcas3 the shape of those municipalities is completely different.**
I'd really appreciate any tips you can give me, I've been at it for days and I can't solve it. I assume the problem is due to the error given by the rbind, which seems to be the most informative one, but I don't know what it means. Thank you very much in advance.
Upvotes: 3
Views: 382
Reputation: 8749
Are you absolutely positively required to use the older {sp} package workflow?
If not it may be easier to dissolve the municipalities into comarcas using a pure {sf} based workflow - grouping by a comarca column, and then summarising will do the trick.
Consider this code:
library(tidyverse)
library(sf)
library(readxl)
library(leaflet)
#Read shapefile
mapa_municip <- st_read("UDALERRIAK_MUNICIPIOS.shp") %>%
st_transform(4326)
#Read excel that contains mapping from town to municioalities
muni2com <- read_excel("listado-comarcas-gipuzkoa.xls",
sheet=1,
range="A1:C91",
col_names = T)
# dissolving comarcas using sf / dplyr based workflow
comarcas <- mapa_municip %>%
inner_join(muni2com, by = c("MUNICIPIO" = "Municipios")) %>%
group_by(Comarca) %>%
summarise() %>% # magic! :)))
ungroup()
leaflet(comarcas) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(color = "red",
label = ~ Comarca)
Upvotes: 2