Reputation: 17292
I looked online and found some SO discussing and ActiveState recipes for running some code with a timeout. It looks there are some common approaches:
join
it with timeout. If timeout elapsed - kill the thread. This is not directly supported in Python (used private _Thread__stop
function) so it is bad practicesignal.SIGALRM
- but this approach not working on Windows!So, what is the right way? I'm not asking about workarounds (eg use Twisted and async IO), but actual way to solve actual problem - I have some function and I want to run it only with some timeout. If timeout elapsed, I want control back. And I want it to work on Linux and Windows.
Upvotes: 34
Views: 22461
Reputation: 2497
The wrapt-timeout-decorator library deserves its mention here:
from wrapt_timeout_decorator import timeout
@timeout(10)
def function_with_timeout():
...
If the function does not finish in 10 seconds, an error is thrown.
Upvotes: 0
Reputation: 309
solving with the 'with' construct and merging solution from -
this thread which work better.
import threading, time
class Exception_TIMEOUT(Exception):
pass
class linwintimeout:
def __init__(self, f, seconds=1.0, error_message='Timeout'):
self.seconds = seconds
self.thread = threading.Thread(target=f)
self.thread.daemon = True
self.error_message = error_message
def handle_timeout(self):
raise Exception_TIMEOUT(self.error_message)
def __enter__(self):
try:
self.thread.start()
self.thread.join(self.seconds)
except Exception, te:
raise te
def __exit__(self, type, value, traceback):
if self.thread.is_alive():
return self.handle_timeout()
def function():
while True:
print "keep printing ...", time.sleep(1)
try:
with linwintimeout(function, seconds=5.0, error_message='exceeded timeout of %s seconds' % 5.0):
pass
except Exception_TIMEOUT, e:
print " attention !! execeeded timeout, giving up ... %s " % e
Upvotes: 0
Reputation: 36
I've solved that in that way: For me is worked great (in windows and not heavy at all) I'am hope it was useful for someone)
import threading
import time
class LongFunctionInside(object):
lock_state = threading.Lock()
working = False
def long_function(self, timeout):
self.working = True
timeout_work = threading.Thread(name="thread_name", target=self.work_time, args=(timeout,))
timeout_work.setDaemon(True)
timeout_work.start()
while True: # endless/long work
time.sleep(0.1) # in this rate the CPU is almost not used
if not self.working: # if state is working == true still working
break
self.set_state(True)
def work_time(self, sleep_time): # thread function that just sleeping specified time,
# in wake up it asking if function still working if it does set the secured variable work to false
time.sleep(sleep_time)
if self.working:
self.set_state(False)
def set_state(self, state): # secured state change
while True:
self.lock_state.acquire()
try:
self.working = state
break
finally:
self.lock_state.release()
lw = LongFunctionInside()
lw.long_function(10)
The main idea is to create a thread that will just sleep in parallel to "long work" and in wake up (after timeout) change the secured variable state, the long function checking the secured variable during its work. I'm pretty new in Python programming, so if that solution has a fundamental errors, like resources, timing, deadlocks problems , please response)).
Upvotes: 0
Reputation: 6807
I found this with eventlet library:
http://eventlet.net/doc/modules/timeout.html
from eventlet.timeout import Timeout
timeout = Timeout(seconds, exception)
try:
... # execution here is limited by timeout
finally:
timeout.cancel()
Upvotes: 4
Reputation: 873
If you're running code that you expect to die after a set time, then you should write it properly so that there aren't any negative effects on shutdown, no matter if its a thread or a subprocess. A command pattern with undo would be useful here.
So, it really depends on what the thread is doing when you kill it. If its just crunching numbers who cares if you kill it. If its interacting with the filesystem and you kill it , then maybe you should really rethink your strategy.
What is supported in Python when it comes to threads? Daemon threads and joins. Why does python let the main thread exit if you've joined a daemon while its still active? Because its understood that someone using daemon threads will (hopefully) write the code in a way that it wont matter when that thread dies. Giving a timeout to a join and then letting main die, and thus taking any daemon threads with it, is perfectly acceptable in this context.
Upvotes: 0
Reputation: 9512
If it's network related you could try:
import socket
socket.setdefaulttimeout(number)
Upvotes: 6
Reputation: 76803
A completely general solution to this really, honestly does not exist. You have to use the right solution for a given domain.
If you want timeouts for code you fully control, you have to write it to cooperate. Such code has to be able to break up into little chunks in some way, as in an event-driven system. You can also do this by threading if you can ensure nothing will hold a lock too long, but handling locks right is actually pretty hard.
If you want timeouts because you're afraid code is out of control (for example, if you're afraid the user will ask your calculator to compute 9**(9**9)
), you need to run it in another process. This is the only easy way to sufficiently isolate it. Running it in your event system or even a different thread will not be enough. It is also possible to break things up into little chunks similar to the other solution, but requires very careful handling and usually isn't worth it; in any event, that doesn't allow you to do the same exact thing as just running the Python code.
Upvotes: 12
Reputation: 70089
An other way is to use faulthandler:
import time
import faulthandler
faulthandler.enable()
try:
faulthandler.dump_tracebacks_later(3)
time.sleep(10)
finally:
faulthandler.cancel_dump_tracebacks_later()
N.B: The faulthandler module is part of stdlib in python3.3.
Upvotes: 2
Reputation: 5949
What you might be looking for is the multiprocessing module. If subprocess
is too heavy, then this may not suit your needs either.
import time
import multiprocessing
def do_this_other_thing_that_may_take_too_long(duration):
time.sleep(duration)
return 'done after sleeping {0} seconds.'.format(duration)
pool = multiprocessing.Pool(1)
print 'starting....'
res = pool.apply_async(do_this_other_thing_that_may_take_too_long, [8])
for timeout in range(1, 10):
try:
print '{0}: {1}'.format(duration, res.get(timeout))
except multiprocessing.TimeoutError:
print '{0}: timed out'.format(duration)
print 'end'
Upvotes: 12
Reputation: 4158
For "normal" Python code, that doesn't linger prolongued times in C extensions or I/O waits, you can achieve your goal by setting a trace function with sys.settrace()
that aborts the running code when the timeout is reached.
Whether that is sufficient or not depends on how co-operating or malicious the code you run is. If it's well-behaved, a tracing function is sufficient.
Upvotes: 2