Reputation: 1155
When trying to get the label of a column in order to one hot encode it by using tensorflow
:
import tensorflow as tf
import pandas as pd
import numpy as np
# some data
d={'column1':['a', 'b', 'c', 'd'], 'column2':['e', 'f', 'g', 'h'], 'column3':[1, 2, 3, 4]}
# convert from pandas df to TensorSliceDataset
df=pd.DataFrame(d)
ds = tf.data.Dataset.from_tensor_slices(dict(df))
# convert to specific feature_column
just_types = tf.feature_column.categorical_column_with_vocabulary_list(
'column1', ds.column1.unique())
# apply one hot encoding
type_one_hot = feature_column.indicator_column(just_types)
type_one_hot
The next error arises:
AttributeError: 'TensorSliceDataset' object has no attribute 'column1'
I know this is possible with pandas
but is it possible to get a dataframe in tensorflow
and then change it to pandas again in a way that kinda looks like this by using tensorflow
? :
# column1_a column1_b column_c column_d
# 1 0 0 0
# 0 1 0 0
# 0 0 1 0
# 0 0 0 1
Upvotes: 1
Views: 559
Reputation: 762
Using function from_tensor_slices in my opinion is an overkill in this example. Just to point out two functions
import tensorflow_datasets as tfds
df=pd.DataFrame(data)
ds = tf.data.Dataset.from_tensor_slices(dict(df))
# going back to pandas DataFrame
df_reversed = tfds.as_dataframe(ds)
And CategoryEncoding option
layer = tf.keras.layers.CategoryEncoding(num_tokens=4, output_mode="one_hot")
layer([1,2,0, 3])
Upvotes: 2