Reputation: 85
I use PyTorch 1.9.0 but get the following error when trying to run a distributed version of a model:
File "/home/ferdiko/fastmoe/examples/transformer-xl/train.py", line 315, in <module>
para_model = DistributedGroupedDataParallel(model).to(device)
File "/home/ferdiko/anaconda3/envs/fastmoe/lib/python3.9/site-packages/fastmoe-0.2.1-py3.9-linux-x86_64.egg/fmoe/distributed.py", line 45, in __init__
self.comms["dp"] = get_torch_default_comm()
File "/home/ferdiko/anaconda3/envs/fastmoe/lib/python3.9/site-packages/fastmoe-0.2.1-py3.9-linux-x86_64.egg/fmoe/utils.py", line 30, in get_torch_default_comm
raise RuntimeError("Unsupported PyTorch version")
if I run torch.cuda.nccl.version()
I get 2708
. The developers suggested to run:
x = torch.rand(10).cuda()
print(torch.cuda.nccl.is_available(x))
which gives me False
. Does this actually mean that there's a problem with PyTorch and NCCL?
Upvotes: 0
Views: 1268
Reputation: 12567
torch.cuda.nccl.is_available
takes a sequence of tensors, and if they are on different devices, there is hope that you'll get a True
:
In [1]: import torch
In [2]: x = torch.rand(1024, 1024, device='cuda:0')
In [3]: y = torch.rand(1024, 1024, device='cuda:1')
In [4]: torch.cuda.nccl.is_available([x, y])
Out[4]: True
If you give it just one tensor, torch.cuda.nccl.is_available
will iterate through it instead, but different parts of the same tensor are always on the same device, so you'll always get a False
:
In [5]: torch.cuda.nccl.is_available(x)
Out[5]: False
In [6]: torch.cuda.nccl.is_available([x])
Out[6]: True
Upvotes: 3