Reputation: 11
although I solved this problem already, I was wondering, whether there is a more direct way of achieving my assignment.
import pandas as pd
df1 = pd.DataFrame({'position': ['20', '8000', '8000'],
'SNP_ID': ['rs01', 'rs02', 'rs03'],
'SNP_ref': ['A', 'C', 'T'],
'SNP_alts': ['G', 'T','A,G,']})
df2 = pd.DataFrame({'position': ['400', '8000', '90000'],
'SNP_ID': ['', '', ''],
'SNP_ref': ['', '', ''],
'SNP_alts': ['', '',''],
'check_ref':['T','T','A'],
'check_alts':['T','G','A'],
'other_data': ['xx','yy','zz']})
c1 = ['SNP_ID','SNP_ref','SNP_alts']
for i in range(len(df2)):
SNVs = df1[df1['position'] == df2['position'].loc[i]]
if not SNVs.empty:
df2.loc[df2.index[i],c1] = SNVs.loc[SNVs['SNP_ref'] == df2['check_ref'].loc[i],c1].iloc[0]
print(df2)
So essentially based on some criteria (more than shown here), I want to assign the values of three columns for a given row (based on some criteria) to three columns in another df. I only got this to work using .tolist().
Is there any more straightforward way of achieving this?
*note: I'm aware that looping over rows in a df is not good practice, but with my knowledge I'm currently unable to come up with a better solution and I have to do more comparisons to decide which rows to copy. For now my dfs are fairly small, so time is not a big issue.
Thanks Hagen
*UPDATE: based on the answers I modified my code again with a more realistic dataset, and got it to work without .tolist()
import pandas as pd
df1 = pd.DataFrame({'position': ['20', '8000', '8000'],
'SNP_ID': ['rs01', 'rs02', 'rs03'],
'SNP_ref': ['A', 'C', 'T'],
'SNP_alts': ['G', 'T','A,G,']})
df2 = pd.DataFrame({'position': ['400', '8000', '90000'],
'SNP_ID': ['', '', ''],
'SNP_ref': ['', '', ''],
'SNP_alts': ['', '',''],
'check_ref':['T','T','A'],
'check_alts':['T','G','A'],
'other_data': ['xx','yy','zz']})
c1 = ['SNP_ID','SNP_ref','SNP_alts']
for i in range(len(df2)):
SNVs = df1[df1['position'] == df2['position'].loc[i]]
if not SNVs.empty:
df2.loc[df2.index[i],c1] = SNVs.loc[SNVs['SNP_ref'] == df2['check_ref'].loc[i],c1].iloc[0]
print(df2)
*Update 2 with additional comparison no checking whether letter ('A', 'T', etc) are matched in *_alts, but SNP_alts can contain multiple sequences seperated by colons (e.g. A,T,G,AA,GG)
import pandas as pd
df1 = pd.DataFrame({'position': ['20', '8000', '8000'],
'SNP_ID': ['rs01', 'rs02', 'rs03'],
'SNP_ref': ['A', 'C', 'T'],
'SNP_alts': ['G', 'T','A,G,']})
df2 = pd.DataFrame({'position': ['400', '8000', '90000'],
'SNP_ID': ['', '', ''],
'SNP_ref': ['', '', ''],
'SNP_alts': ['', '',''],
'check_ref':['T','T','A'],
'check_alts':['T','G','A'],
'other_data': ['xx','yy','zz']})
c1 = ['SNP_ID','SNP_ref','SNP_alts']
for i in range(len(df2)):
SNVs = df1[df1['position'] == df2['position'].loc[i]]
if not SNVs.empty:
bm1 = SNVs['SNP_ref'] == df2['check_ref'].loc[i]
bm2 = SNVs['SNP_alts'].apply(lambda x: True if df2['check_alts'].loc[i] in x.split(',') else False)
if len(SNVs.loc[bm1 & bm2,c1])>0:
df2.loc[df2.index[i],c1] = SNVs.loc[bm1 & bm2,c1].iloc[0]
print(df2)
Upvotes: 1
Views: 137
Reputation: 862791
Use DataFrame.update
with rename columns for correct match:
c1 = ['SNP_ID','SNP_ref','SNP_alts']
c2 = ['name','ref','alts']
d = dict(zip(c2, c1))
#for align values by column position
df11 = df1.set_index(['position','SNP_ref'])
df22 = df2.set_index(['position','check_ref'])
df22.update(df11.rename(columns=d))
df22 = df22.reset_index().reindex(df2.columns, axis=1)
print (df22)
position SNP_ID SNP_ref SNP_alts check_ref other_data
0 400 T xx
1 8000 rs03 A T yy
2 90000 A zz
Upvotes: 1