Reputation: 109
I am looking for an equivalent of permute(A,dimorder)
from Matlab, in order to convert some Matlab code to R.
A loop entails a line that looks something like this:
x = permute(a{i}(b(i,ii),:,:,:,:,:),[2 3 4 5 6 1])
The cell array structure e.g. a{1}(1,:,:,:,:,:)
results in selecting the first row of matrices within the cell array a{}
. [2 3 4 5 6 1]
in permute()
refers to the dimorder
.
The documentation for the matlab function permute()
including example output can be found here:
https://de.mathworks.com/help/matlab/ref/permute.html
There are several functions in R referring to permutation in some way or another, but non of them seemed to be what I am looking for, though I may have gotten something wrong.
Upvotes: 0
Views: 199
Reputation: 16971
I believe I successfully replicated the MATLAB script in R. I don't think you actually need an equivalent for permute
. In the MATLAB script, permute
appears to be simply dropping excess dimensions. R does that by default unless you specify drop = FALSE
when you subset an array, e.g.,
lnA[[tau, modal]] <- a[[modal]][outcomes[modal, tau],,,drop = FALSE]
If I add lnA = cell(T, NumModalities);
to the MATLAB script before your final for
loop and then modify the inside of the loop to be
lnA{tau, modal} = permute(a{modal}(outcomes(modal,tau),:,:,:,:,:),[2 3 4 5 6 1]);
Then I get the same array of matrices in lnA
for both the MATLAB and R implementations.
In R, I use an array of lists as the equivalent of a MATLAB 2+ dimension cell array:
lnA1 = cell(T, 1); # MATLAB
lnA1 <- vector("list", Time) # R
lnA2 = cell(T, NumModalities); # MATLAB
lnA2 <- array(vector("list", Time*NumModalities), c(Time, NumModalities)) # R
lnA2 <- matrix(vector("list", Time*NumModalities), Time) # R
lnA3 = cell(T, NumModalities, 2); # MATLAB
lnA3 <- array(vector("list", Time*NumModalities*2), c(Time, NumModalities, 2)) # R
Here's the implementation:
nat_log <- function (x) { # necessary as log(0) not defined...
x <- log(x + exp(-16))
}
# Set up a list for D and A
D <- list(c(1, 0), # (left better, right better)
c(1, 0, 0, 0)) #(start, hint, choose-left, choose-right)
A <- c(rep(list(array(0, c(3, 2, 4))), 2), list(array(0, c(4, 2, 4))))
Ns <- lengths(D) # number of states in each state factor (2 and 4)
A[[1]][,,1:Ns[2]] <- matrix(c(1,1, # No Hint
0,0, # Machine-Left Hint
0,0), # Machine-Right Hint
ncol = 2, nrow = 3, byrow = TRUE)
pHA <- 1
A[[1]][,,2] <- matrix(c(0, 0, # No Hint
pHA, 1 - pHA, # Machine-Left Hint
1 - pHA, pHA), # Machine-Right Hint
nrow = 3, ncol = 2, byrow = TRUE)
A[[2]][,,1:2] <- matrix(c(1, 1, # Null
0, 0, # Loss
0, 0), # Win
ncol = 2, nrow = 3, byrow = TRUE)
pWin <- 0.8
A[[2]][,,3] <- matrix(c(0, 0, # Null
1 - pWin, pWin, # Loss
pWin, 1 - pWin), # Win
ncol = 2, nrow = 3, byrow = TRUE)
A[[2]][,,4] <- matrix(c(0, 0, # Null
pWin, 1 - pWin, # Loss
1 - pWin, pWin), # Win
ncol = 2, nrow = 3, byrow = TRUE)
for (i in 1:Ns[2]) {
A[[3]][i,,i] <- c(1,1)
}
# Set up a list of matrices:
a <- lapply(1:3, function(i) A[[i]]*200)
a[[1]][,,2] <- matrix(c(0, 0, # No Hint
0.25, 0.25, # Machine-Left Hint
0.25, 0.25), # Machine-Right Hint
nrow = 3, ncol = 2, byrow = TRUE)
outcomes <- matrix(c(1, 2, 1,
1, 1, 2,
1, 2, 4),
ncol = 3, nrow = 3, byrow = TRUE)
NumModalities <- length(a) # number of outcome factors
Time <- 3L
lnA <- array(vector("list", Time*NumModalities), c(Time, NumModalities))
for (tau in 1:Time){
for (modal in 1:NumModalities){
lnA[[tau, modal]] <- a[[modal]][outcomes[modal, tau],,]
}
}
Upvotes: 1