Reputation: 23
I wrote a function to run a univariable regression on a filtered data set. The function takes as arguments a value used for filtering and the name of the predictor for the regression model. As you can see, I am struggling with data masking and evaluation. How do I use the .pred argument directly in the regression model? Thanks!
pacman::p_load(tidyverse, purrr, broom)
data("mtcars")
# my function
regr_func <- function(.cyl, .pred){
mtcars %>%
filter(cyl == .cyl) %>% # cars with .cyl cylinders
mutate(x = .data[[.pred]]) %>% # this is a bit of a hack :(
lm(mpg ~ x, data = .) %>%
tidy() %>%
mutate(predictor = .pred,
cylinders = .cyl)
}
regr_func(4, "hp")
#> # A tibble: 2 × 7
#> term estimate std.error statistic p.value predictor cylinders
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 (Intercept) 36.0 5.20 6.92 0.0000693 hp 4
#> 2 x -0.113 0.0612 -1.84 0.0984 hp 4
Created on 2021-10-26 by the reprex package (v2.0.1)
Thanks to Jon's tip, I could rewrite the function to pass the .pred argument directly to lm(), but now I can't pipe the data into lm(), so I had to create a new data set inside the function.
regr_func1 <- function(.cyl, .pred){
tmp <- mtcars %>% filter(cyl == .cyl)
xsym <- rlang::ensym(.pred)
rlang::inject( lm(mpg ~ !!xsym, data = tmp) ) %>%
tidy() %>%
mutate(cylinders = .cyl)
}
Upvotes: 2
Views: 830
Reputation: 388982
You can create the formula on fly using as.formula
or reformulate
without breaking the pipe.
library(dplyr)
library(broom)
regr_func <- function(.cyl, .pred){
mtcars %>%
filter(cyl == .cyl) %>%
lm(reformulate(.pred, 'mpg'), data = .) %>%
tidy() %>%
mutate(predictor = .pred,
cylinders = .cyl)
}
regr_func(4, "hp")
# term estimate std.error statistic p.value predictor cylinders
# <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#1 (Intercept) 36.0 5.20 6.92 0.0000693 hp 4
#2 hp -0.113 0.0612 -1.84 0.0984 hp 4
Upvotes: 0
Reputation: 1146
Alternative approach, using glue
library:
regr_func <- function(.cyl, .pred){
require(glue)
o <- 'mpg ~ {.pred}' %>% glue
lm(o, data = mtcars %>% subset(cyl == .cyl))
}
Upvotes: 3