Reputation: 103
I have the following Keras model code:
def create_model():
inputs = layers.Input((32, 32, 20))
x = layers.Conv2D(filters, 3, padding='same')(inputs)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
outputs = layers.Conv2D(6, 1, padding='same')(x)
outputs = outputs * inputs[..., :1]
model = Model(inputs, outputs)
return model
I want to set some outputs
entries to new values based on inputs
with the following code:
outputs[..., 0] = tf.ones_like(inputs[..., 0]) - inputs[..., 0]
However, it throws an error: TypeError: 'KerasTensor' object does not support item assignment
. I've also tried using
outputs = outputs[..., 0].assign(tf.ones_like(inputs[..., 0]) - inputs[..., 0])
but it throws a different error: 'KerasTensor' object has no attribute 'assign'
(however, it works with ordinary tensorflow tensors).
So, is there a way to set some values of outputs
to ones in the way I want?
Example of what I want to do (using arrays):
inputs:
[[[0 1 0 0]
[1 1 1 0]
[1 0 0 0]]
[[1 1 0 1]
[0 1 0 1]
[1 1 1 0]]]
outputs:
[[[ 0.538 -1.141 -0.483 0.2 ]
[-0.418 0.087 -0.915 0.433]
[ 0.434 1.298 1.202 1.13 ]]
[[ 0.175 1.672 0.769 0.226]
[ 1.203 0.019 0.107 0.09 ]
[-0.108 0.145 -0.537 0.213]]]
After outputs = outputs * inputs[..., :1]
I get
[[[ 0. -0. -0. 0. ]
[-0.418 0.087 -0.915 0.433]
[ 0.434 1.298 1.202 1.13 ]]
[[ 0.175 1.672 0.769 0.226]
[ 0. 0. 0. 0. ]
[-0.108 0.145 -0.537 0.213]]]
And with outputs[..., 0] = tf.ones_like(inputs[..., 0]) - inputs[..., 0]
I want to get
[[[ 1. -0. -0. 0. ]
[ 0. 0.087 -0.915 0.433]
[ 0. 1.298 1.202 1.13 ]]
[[ 0. 1.672 0.769 0.226]
[ 1. 0. 0. 0. ]
[ 0. 0.145 -0.537 0.213]]]
Upvotes: 0
Views: 79
Reputation: 26708
Here is a simple working solution based on tensor_scatter_nd_update and meshgrid. For more information, check out this post. I also introduced a Lambda
layer to your model to compute the outputs.
import tensorflow as tf
def compute_output(tensor):
outputs, inputs = tensor
outputs = outputs * inputs[..., :1]
index_1, index_2, index_3 = tf.meshgrid(tf.range(tf.shape(outputs)[0]), tf.range(tf.shape(outputs)[1]), tf.range(tf.shape(outputs)[2]), indexing='ij')
index_4 = 0 * tf.cast(tf.ones_like(outputs[..., 0]), dtype=tf.int32)
indices = tf.stack([index_1, index_2, index_3, index_4], axis=-1)
return tf.tensor_scatter_nd_update(outputs, indices, tf.ones_like(inputs[..., 0]) - inputs[..., 0])
def create_model():
inputs = tf.keras.layers.Input((32, 32, 20))
x = tf.keras.layers.Conv2D(12, 3, padding='same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
outputs = tf.keras.layers.Conv2D(6, 1, padding='same')(x)
outputs = tf.keras.layers.Lambda(compute_output)((outputs, inputs))
model = tf.keras.Model(inputs, outputs)
return model
dummy_data = tf.random.normal((1, 32, 32, 20))
model = create_model()
print(model(dummy_data))
Upvotes: 1