Reputation: 5897
I am using R programming language. Suppose I have the following data ("my_data"):
student first_run second_run third_run fourth_run fifth_run sixth_run seventh_run eight_run ninth_run tenth_run
1 student1 19.70847 21.79771 16.49083 19.51691 13.97987 14.60733 13.89703 15.24651 20.75679 18.44020
2 student2 11.22369 15.36253 16.90215 20.20724 15.90227 15.14539 13.74945 18.30090 19.55124 17.24132
3 student3 15.93649 17.03599 14.20214 13.17548 14.70327 15.49697 13.08945 19.94142 22.41674 17.37958
4 student4 16.18733 15.13197 14.79481 16.75177 14.51287 17.71816 13.45054 14.25553 19.89091 18.88981
5 student5 18.71084 18.85453 17.15864 19.38880 15.68862 18.39169 15.26428 16.04526 18.92532 16.62409
6 student6 19.75246 12.74605 18.52214 17.92626 14.48501 17.20780 13.10512 12.46502 20.68583 15.87711
7 student7 14.75144 23.82376 18.51366 20.77424 14.22155 16.08186 12.95981 12.67820 20.12166 15.66006
8 student8 17.06516 15.63075 13.72026 15.02068 14.21098 15.99414 14.64818 16.15603 21.74607 17.07382
9 student9 20.27611 12.44592 12.26502 15.13456 14.61552 18.72192 15.11129 17.60746 18.83831 17.55257
10 student10 17.70736 16.21620 14.10861 17.20014 16.59376 19.50027 13.05073 15.80002 18.09781 18.34313
I want to add 2 columns to this data:
I tried the following code in R:
my_data$median = apply(my_data, 1, median, na.rm=T)
my_data$mean = apply(my_data, 1, mean, na.rm=T)
But I don't think this code is correct. For instance, when using this code, the median of the second row of data is returned as "16.90215"
But when I manually take the median of this row:
median(11.22369 , 15.36253 , 16.90215 , 20.20724, 15.90227 , 15.14539 , 13.74945 , 18.30090 , 19.55124 , 17.24132)
I get an answer of
11.22
Can someone please show me what I am doing wrong?
Thanks
Upvotes: 1
Views: 357
Reputation: 72758
You could definitely benefit from the speed of matrixStats
library.
matrixStats::rowMedians(as.matrix(d[-1]))
# [1] 17.46551 16.40221 15.71673 15.65965 17.77517 16.54246 15.87096 15.81245 16.34356 16.89695
matrixStats::rowMeans2(as.matrix(d[-1]))
# [1] 17.44417 16.35862 16.33775 16.15837 17.50521 16.27728 16.95862 16.12661 16.25687 16.66180
stopifnot(all.equal(matrixStats::rowMedians(as.matrix(d[-1])),
as.numeric(apply(d[-1], 1, median, na.rm=T))))
stopifnot(all.equal(matrixStats::rowMeans2(as.matrix(d[-1])),
as.numeric(apply(d[-1], 1, mean, na.rm=T))))
Data:
d <- structure(list(student = c("student1", "student2", "student3",
"student4", "student5", "student6", "student7", "student8", "student9",
"student10"), first_run = c(19.70847, 11.22369, 15.93649, 16.18733,
18.71084, 19.75246, 14.75144, 17.06516, 20.27611, 17.70736),
second_run = c(21.79771, 15.36253, 17.03599, 15.13197, 18.85453,
12.74605, 23.82376, 15.63075, 12.44592, 16.2162), third_run = c(16.49083,
16.90215, 14.20214, 14.79481, 17.15864, 18.52214, 18.51366,
13.72026, 12.26502, 14.10861), fourth_run = c(19.51691, 20.20724,
13.17548, 16.75177, 19.3888, 17.92626, 20.77424, 15.02068,
15.13456, 17.20014), fifth_run = c(13.97987, 15.90227, 14.70327,
14.51287, 15.68862, 14.48501, 14.22155, 14.21098, 14.61552,
16.59376), sixth_run = c(14.60733, 15.14539, 15.49697, 17.71816,
18.39169, 17.2078, 16.08186, 15.99414, 18.72192, 19.50027
), seventh_run = c(13.89703, 13.74945, 13.08945, 13.45054,
15.26428, 13.10512, 12.95981, 14.64818, 15.11129, 13.05073
), eight_run = c(15.24651, 18.3009, 19.94142, 14.25553, 16.04526,
12.46502, 12.6782, 16.15603, 17.60746, 15.80002), ninth_run = c(20.75679,
19.55124, 22.41674, 19.89091, 18.92532, 20.68583, 20.12166,
21.74607, 18.83831, 18.09781), tenth_run = c(18.4402, 17.24132,
17.37958, 18.88981, 16.62409, 15.87711, 15.66006, 17.07382,
17.55257, 18.34313)), class = "data.frame", row.names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10"))
Upvotes: 1
Reputation: 78927
Here is an alternative using pmap
along with passing all the arguments simultaneously thus using ellipsis i.e. ...
. The output is needed to be unnested with unnest_wider
from tidyr
:
library(tidyr)
library(dplyr)
library(purrr)
df %>%
mutate(res = pmap(across(where(is.numeric)),
~ list(median = median(c(...)),
avg = mean(c(...))))) %>%
unnest_wider(res)
output:
student first_run second_run third_run fourth_run fifth_run sixth_run seventh_run eight_run ninth_run tenth_run median avg
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 student1 19.7 21.8 16.5 19.5 14.0 14.6 13.9 15.2 20.8 18.4 17.5 17.4
2 student2 11.2 15.4 16.9 20.2 15.9 15.1 13.7 18.3 19.6 17.2 16.4 16.4
3 student3 15.9 17.0 14.2 13.2 14.7 15.5 13.1 19.9 22.4 17.4 15.7 16.3
4 student4 16.2 15.1 14.8 16.8 14.5 17.7 13.5 14.3 19.9 18.9 15.7 16.2
5 student5 18.7 18.9 17.2 19.4 15.7 18.4 15.3 16.0 18.9 16.6 17.8 17.5
6 student6 19.8 12.7 18.5 17.9 14.5 17.2 13.1 12.5 20.7 15.9 16.5 16.3
7 student7 14.8 23.8 18.5 20.8 14.2 16.1 13.0 12.7 20.1 15.7 15.9 17.0
8 student8 17.1 15.6 13.7 15.0 14.2 16.0 14.6 16.2 21.7 17.1 15.8 16.1
9 student9 20.3 12.4 12.3 15.1 14.6 18.7 15.1 17.6 18.8 17.6 16.3 16.3
10 student10 17.7 16.2 14.1 17.2 16.6 19.5 13.1 15.8 18.1 18.3 16.9 16.7
Upvotes: 1
Reputation: 18632
library(dplyr)
df %>%
rowwise() %>%
mutate(median = median(c_across(where(is.numeric))),
mean = mean(c_across(where(is.numeric))))
c_across
and rowwise
were created for this type of situation. Most verbs work column-wise. To change this behavior pipe to rowwise
first.
c_across
will then combine all values in a row that are numeric (hence where(is.numeric)
into a numeric vector and then mean
or median
can be applied.
Note: You will likely want to pipe the output to ungroup
since rowwise
creates a rowwise grouped data frame.
Upvotes: 1
Reputation: 887078
The calculation is incorrect i.e. the first argument of median
is 'x' which can be a vector. The second argument is na.rm
, followed by variadic arguments ...
. So, when write 11.22369, 15.36253
, the 'x' is taken as 11.22369
and that is the value returned. Instead, it should be a vector by concatenation c
median(c(11.22369 , 15.36253 , 16.90215 , 20.20724, 15.90227 , 15.14539 , 13.74945 , 18.30090 , 19.55124 , 17.24132))
[1] 16.40221
Also, based on the OP's data, the first column should be dropped which is character or factor
apply(my_data[-1], 1, median, na.rm=TRUE)
1 2 3 4 5 6 7 8 9 10
17.46551 16.40221 15.71673 15.65965 17.77517 16.54246 15.87096 15.81245 16.34356 16.89695
The second row is used in the manual
calculation
Upvotes: 2