Reputation: 11
I made a table in Latex with quite a lot of multicolumns and rows and I have the problem that my multicolum in the fourth row of the table is uneven regarding the width. And due to that every following multicolum which makes two colums out of one has the same issue. In the following you will see the output of the code followed by the code. I have tried everything regarding putting a p{1mm} into the begin{table} code etc., but nothing really changed the width of the problematic columns.
The Code is the following:
\clearpage
\begin{landscape}
\begin{table}[h]
{\footnotesize
\scalebox{0.60}{
\begin{minipage}[c]{0.6\linewidth}
\begin{threeparttable}[t]
\begin{tabular}{l|p{1cm}|p{1cm}|l|l|l|l|l|l|l|l|l|l}
\hline \hline
Method & \multicolumn{6}{c|}{$n_{max}=45$} & \multicolumn{6}{c}{$n_{max}=64$} \\
\cline{2-13}
& \multicolumn{2}{c|}{2+9-month PFS} & \multicolumn{2}{c|}{4+9-month PFS} & \multicolumn{2}{c|}{6+9-month PFS} & \multicolumn{2}{c|}{2+9-month PFS} & \multicolumn{2}{c|}{4+9-month PFS} & \multicolumn{2}{c}{6+9-month PFS} \\
\cline{2-13}
& \multicolumn{2}{c|}{$p_{2,0}=0.7, p_{0}=0.127$} & \multicolumn{2}{c|}{$p_{2,0}=0.4, p_{0}=0.127$} & \multicolumn{2}{c|}{$p_{2,0}=0.2, p_{0}=0.127$} & \multicolumn{2}{c|}{$p_{2,0}=0.7, p_{0}=0.127$} & \multicolumn{2}{c|}{$p_{2,0}=0.4, p_{0}=0.127$} & \multicolumn{2}{c}{$p_{2,0}=0.2, p_{0}=0.127$} \\
\cline{2-13}
& C & D & C & D & C & D & C & D & C & D & C & D \\
\cline{2-13}
& \multicolumn{2}{c|}{$n_{sim}=100$} & \multicolumn{2}{c|}{$n_{sim}=100$} & \multicolumn{2}{c|}{$n_{sim}=100$} & \multicolumn{2}{c|}{$n_{sim}=100$} & \multicolumn{2}{c|}{$n_{sim}=100$} & \multicolumn{2}{c}{$n_{sim}=100$} \\
\hline
\multirow{13}{*}{Weibull Survival Model} & \multicolumn{2}{c|}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$\upsilon = max(E_{km}) + 2$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km}) + 4$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km}) + 6$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km}) + 2$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km}) + 4$} & \multicolumn{2}{c}{$\upsilon = max(E_{km}) + 6$} \\
\cline{2-13}
& \multicolumn{2}{c|}{2. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c}{2. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.17, 4.84)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.00, 4.37)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(0.61, 2.76)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.17, 4.84)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.00, 4.37)$} & \multicolumn{2}{c}{$Y\raisebox{-0.9ex}{\~{}}Weibull(0.61, 2.76)$}\\
\cline{2-13}
& \multicolumn{1}{c|}{$Y_{con}$} & \multicolumn{1}{c|}{$Y_{dis} = R(Y_{con})$} &
\multicolumn{1}{c|}{$Y_{con}$} & \multicolumn{1}{c|}{$Y_{dis} = R(Y_{con})$}&
\multicolumn{1}{c|}{$Y_{con}$} & \multicolumn{1}{c|}{$Y_{dis} = R(Y_{con})$}&
\multicolumn{1}{c|}{$Y_{con}$} & \multicolumn{1}{c|}{$Y_{dis} = R(Y_{con})$}&
\multicolumn{1}{c|}{$Y_{con}$} & \multicolumn{1}{c|}{$Y_{dis} = R(Y_{con})$} &
\multicolumn{1}{c|}{$Y_{con}$} & \multicolumn{1}{c}{$Y_{dis} = R(Y_{con})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$YE=Y+E_{km}$} & \multicolumn{2}{c|}{$YE=Y+E_{km}$} & \multicolumn{2}{c|}{$YE=Y+E_{km}$}& \multicolumn{2}{c|}{$YE=Y+E_{km}$}& \multicolumn{2}{c|}{$YE=Y+E_{km}$}& \multicolumn{2}{c}{$YE=Y+E_{km}$} \\
\cline{2-13}
& \multicolumn{12}{c}{Interim Analysis} \\
\cline{2-13}
& \multicolumn{2}{c|}{$Z|YE>\upsilon=\upsilon - E_{km}$} & \multicolumn{2}{c|}{$Z|YE>\upsilon=\upsilon - E_{km}$}
& \multicolumn{2}{c|}{$Z|YE>\upsilon=\upsilon - E_{km}$} & \multicolumn{2}{c|}{$Z|YE>\upsilon=\upsilon - E_{km}$} & \multicolumn{2}{c|}{$Z|YE>\upsilon=\upsilon - E_{km}$} & \multicolumn{2}{c}{$Z|YE>\upsilon=\upsilon - E_{km}$}\\
\cline{2-13}
& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c}{$Z_{dis}=R(Z_{con})$}\\
\cline{2-13}
& \multicolumn{12}{c}{Final Analysis} \\
\cline{2-13}
& \multicolumn{2}{c|}{$\Upsilon = max(E_{km}) + 9$} & \multicolumn{2}{c|}{$\Upsilon = max(E_{km}) + 9$} & \multicolumn{2}{c|}{$\Upsilon = max(E_{km}) + 9$} & \multicolumn{2}{c|}{$\Upsilon = max(E_{km}) + 9$} & \multicolumn{2}{c|}{$\Upsilon = max(E_{km}) + 9$} & \multicolumn{2}{c}{$\Upsilon = max(E_{km}) + 9$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$Z|YE>\Upsilon=\Upsilon - E_{km}$} & \multicolumn{2}{c|}{$Z|YE>\Upsilon=\Upsilon - E_{km}$}
& \multicolumn{2}{c|}{$Z|YE>\Upsilon=\Upsilon - E_{km}$} & \multicolumn{2}{c|}{$Z|YE>\Upsilon=\Upsilon - E_{km}$} & \multicolumn{2}{c|}{$Z|YE>\Upsilon=\Upsilon - E_{km}$} & \multicolumn{2}{c}{$Z|YE>\Upsilon=\Upsilon - E_{km}$}\\
\cline{2-13}
& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c|}{$Z_{dis}=R(Z_{con})$}& \multicolumn{1}{c|}{$Z_{con}$} &
\multicolumn{1}{c}{$Z_{dis}=R(Z_{con})$} \\
\hline
\multirow{8}{*}{Kunz} & \multicolumn{2}{c|}{1. Stage: $E_{km}, E_{ko} \raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}, E_{ko}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}, E_{ko}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}, E_{ko}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{km}, E_{ko}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c}{1. Stage: $E_{km}, E_{ko}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$\upsilon = max(E_{km})\: (max(E_{ko})) + 2$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km})\: (max(E_{ko})) + 4$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km})\: (max(E_{ko})) + 6$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km})\: (max(E_{ko})) + 2$} & \multicolumn{2}{c|}{$\upsilon = max(E_{km})\: (max(E_{ko})) + 4$} & \multicolumn{2}{c}{$\upsilon = max(E_{km})\: (max(E_{ko})) + 6$} \\
\cline{2-13}
& \multicolumn{2}{c|}{2. Stage: $E_{km}, E_{ko}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km},E_{ko}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km},E_{ko}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km},E_{ko}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{km},E_{ko}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c}{2. Stage: $E_{km},E_{ko}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.17, 4.84)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.00, 4.37)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(0.61, 2.76)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.17, 4.84)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.00, 4.37)$} & \multicolumn{2}{c}{$Y\raisebox{-0.9ex}{\~{}}Weibull(0.61, 2.76)$} \\
\cline{2-13}
& \multicolumn{12}{c}{Interim Analysis} \\
\cline{2-13}
& \multicolumn{2}{c|}{Response: $Y>2$} & \multicolumn{2}{c|}{Response: $Y>4$} & \multicolumn{2}{c|}{Response: $Y>6$}& \multicolumn{2}{c|}{Response: $Y>2$} & \multicolumn{2}{c|}{Response: $Y>4$} & \multicolumn{2}{c}{Response: $Y>6$} \\
\cline{2-13}
& \multicolumn{12}{c}{Final Analysis} \\
\cline{2-13}
& \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$}& \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c}{Response: $Y>9$} \\
\hline
\multirow{8}{*}{Simon} & \multicolumn{2}{c|}{1. Stage: $E_{sm}, E_{so} \raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{sm}, E_{so}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{sm}, E_{so}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{sm}, E_{so}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c|}{1. Stage: $E_{sm}, E_{so}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} & \multicolumn{2}{c}{1. Stage: $E_{sm}, E_{so}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$\upsilon = max(E_{sm})\: (max(E_{so})) + 9$} & \multicolumn{2}{c|}{$\upsilon = max(E_{sm})\: (max(E_{so})) + 9$} & \multicolumn{2}{c|}{$\upsilon = max(E_{sm})\: (max(E_{so})) + 9$} & \multicolumn{2}{c|}{$\upsilon = max(E_{sm})\: (max(E_{so})) + 9$} & \multicolumn{2}{c|}{$\upsilon = max(E_{sm})\: (max(E_{so})) + 9$} & \multicolumn{2}{c}{$\upsilon = max(E_{sm})\: (max(E_{so})) + 9$} \\
\cline{2-13}
& \multicolumn{2}{c|}{2. Stage: $E_{sm}, E_{so}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{sm},E_{so}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{sm},E_{so}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{sm},E_{so}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c|}{2. Stage: $E_{sm},E_{so}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} & \multicolumn{2}{c}{2. Stage: $E_{sm},E_{so}\raisebox{-0.9ex}{\~{}}U(\upsilon, \omega = \upsilon + \frac{n-n_{1}}{2})$} \\
\cline{2-13}
& \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.17, 4.84)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.00, 4.37)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(0.61, 2.76)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.17, 4.84)$} & \multicolumn{2}{c|}{$Y\raisebox{-0.9ex}{\~{}}Weibull(1.00, 4.37)$} & \multicolumn{2}{c}{$Y\raisebox{-0.9ex}{\~{}}Weibull(0.61, 2.76)$} \\
\cline{2-13}
& \multicolumn{12}{c}{Interim Analysis} \\
\cline{2-13}
& \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$}& \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c}{Response: $Y>9$} \\
\cline{2-13}
& \multicolumn{12}{c}{Final Analysis} \\
\cline{2-13}
& \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$}& \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c|}{Response: $Y>9$} & \multicolumn{2}{c}{Response: $Y>9$} \\
\hline
\end{tabular}
\begin{tablenotes}
\item[] R() rounding function: rounding occurs in two-steps when $Y_{con}, Z_{con}<6$ and in three-steps when $Y_{con}, Z_{con}\geq6$
\item[] For Simon's designs the intermediate endpoint is equal to the primary endpoint, thus 9+9-month PFS.
\end{tablenotes}
\end{threeparttable}
\end{minipage}}}
\caption{Simulation Study under $H_{0}$ - detailed overview.}
\label{tab:SimulationStudyH0}
\end{table}
\end{landscape}
I just need some quick solution for that without having to change everything again. I am thankful for any suggestions. :)
Minimum example:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{threeparttable}
\usepackage{graphicx}
\begin{document}
\clearpage
\begin{table}[h]
{\footnotesize
\scalebox{1}{
\begin{minipage}[c]{0.6\linewidth}
\begin{threeparttable}[t]
\begin{tabular}{l|p{1cm}|p{1cm}}
\hline \hline
Method & \multicolumn{2}{c}{$n_{max}=45$} \\
\cline{2-3}
& \multicolumn{2}{c}{2+9-month PFS} \\
\cline{2-3}
& \multicolumn{2}{c}{$p_{2,0}=0.7, p_{0}=0.127$} \\
\cline{2-3}
& C & D \\
\cline{2-3}
& \multicolumn{2}{c}{$n_{sim}=100$} \\
\hline
Weibull Survival Model& \multicolumn{2}{c}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} \\
\hline
\end{tabular}
\end{threeparttable}
\end{minipage}}}
\caption{Simulation Study under $H_{0}$ - detailed overview.}
\label{tab:SimulationStudyH0}
\end{table}
\end{document}
Upvotes: 1
Views: 4318
Reputation: 38923
The problem is that a couple of your multicols have content which is wider than 2cm and by using a c
column for them, you don't allow these cells to break. Instead they have to make the second column wider, that's why your cells seem to be unequal.
Two approaches to avoid the problem:
allow breaks in the multicolumns (in particular with such narrow columns, the result won't be pleasant...)
make your columns wider (will require an even tinier font and make the result harder to read without a microscope...)
Choose your poison:
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{threeparttable}
\usepackage{graphicx}
\begin{document}
\clearpage
\begin{table}[h]
{\footnotesize
% \scalebox{1}{
\begin{minipage}[c]{0.6\linewidth}
\begin{threeparttable}[t]
\begin{tabular}{l|p{1cm}|p{1cm}}
\hline \hline
Method & \multicolumn{2}{c}{$n_{max}=45$} \\
\cline{2-3}
& \multicolumn{2}{c}{2+9-month PFS} \\
\cline{2-3}
& \multicolumn{2}{p{2cm}}{$p_{2,0}=0.7, p_{0}=0.127$} \\
\cline{2-3}
& C & D \\
\cline{2-3}
& \multicolumn{2}{c}{$n_{sim}=100$} \\
\hline
Weibull Survival Model& \multicolumn{2}{p{2cm}}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} \\
\hline
\end{tabular}
\end{threeparttable}
\end{minipage}}%}
\caption{Simulation Study under $H_{0}$ - detailed overview.}
\label{tab:SimulationStudyH0}
\end{table}
\end{document}
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{threeparttable}
\usepackage{graphicx}
\begin{document}
\clearpage
\begin{table}[h]
{\footnotesize
% \scalebox{1}{
\begin{minipage}[c]{0.6\linewidth}
\begin{threeparttable}[t]
\begin{tabular}{l|p{2cm}|p{2cm}}
\hline \hline
Method & \multicolumn{2}{c}{$n_{max}=45$} \\
\cline{2-3}
& \multicolumn{2}{c}{2+9-month PFS} \\
\cline{2-3}
& \multicolumn{2}{c}{$p_{2,0}=0.7, p_{0}=0.127$} \\
\cline{2-3}
& C & D \\
\cline{2-3}
& \multicolumn{2}{c}{$n_{sim}=100$} \\
\hline
Weibull Survival Model& \multicolumn{2}{c}{1. Stage: $E_{km}\raisebox{-0.9ex}{\~{}}U(0, \omega = \frac{n_{1}}{2})$} \\
\hline
\end{tabular}
\end{threeparttable}
\end{minipage}}%}
\caption{Simulation Study under $H_{0}$ - detailed overview.}
\label{tab:SimulationStudyH0}
\end{table}
\end{document}
Upvotes: 1