Emman
Emman

Reputation: 4201

Any speedier way to randomly subset vectors inside a list?

I'm looking for a speedy solution for randomly subsetting vectors nested in a list.

If we simulate the following data, we get a list l that holds 3 million vectors inside, each one is of length 5. But I want the length of each vector to vary. So I thought I should apply a function that randomly subsets each vector. The problem is, this method is not as speedy as I wished.

simulate data: the list l

library(stringi)

set.seed(123)
vec_n <- 15e6
vec_vals  <- 1:vec_n
vec_names <- stringi::stri_rand_strings(vec_n, 5)

my_named_vec <- setNames(vec_vals, vec_names)

split_func <- function(x, n) {
  unname(split(x, rep_len(1:n, length(x))))
}

l <- split_func(my_named_vec, n = vec_n / 5)

head(l)
#> [[1]]
#>    HmPsw    Qk8NP    Quo3T    8f0GH    nZmjN 
#>        1  3000001  6000001  9000001 12000001 
#> 
#> [[2]]
#>    2WtYS    ZaHFl    6YjId    jbGuA    tAG65 
#>        2  3000002  6000002  9000002 12000002 
#> 
#> [[3]]
#>    xSgZ6    jM5Uw    ujPOc    CTV5F    5JRT5 
#>        3  3000003  6000003  9000003 12000003 
#> 
#> [[4]]
#>    tF2Kx    r4ZCI    Ooklo    VOLHU    M6z6H 
#>        4  3000004  6000004  9000004 12000004 
#> 
#> [[5]]
#>    tgdze    w8d1B    FYERK    jlClo    NQfsF 
#>        5  3000005  6000005  9000005 12000005 
#> 
#> [[6]]
#>    hXaH9    gsY1u    CjBwC    Oqqty    dxJ4c 
#>        6  3000006  6000006  9000006 12000006

Now that we have l, I wish to subset each vector randomly: meaning that the number of elements being subsetted (per vector) will be random. So one option is to set the following utility function:

randomly_subset_vec <- function(x) {
  my_range <- 1:length(x)
  x[-sample(my_range, sample(my_range))]
}

lapply(head(l), randomly_subset_vec)
#> [[1]]
#>   Quo3T 
#> 6000001 
#> 
#> [[2]]
#>   6YjId   jbGuA 
#> 6000002 9000002 
#> 
#> [[3]]
#>   xSgZ6   jM5Uw   ujPOc   CTV5F 
#>       3 3000003 6000003 9000003 
#> 
#> [[4]]
#>   Ooklo 
#> 6000004 
#> 
#> [[5]]
#> named integer(0)
#> 
#> [[6]]
#>    CjBwC    Oqqty    dxJ4c 
#>  6000006  9000006 12000006

But running this procedure over the entire l takes forever. I've tried using rrapply which is a fast package for dealing with lists, and it takes "only" 110 seconds on my machine.

library(rrapply)
library(tictoc)

tic()
l_subsetted <- rrapply(object = l, f = randomly_subset_vec)
toc()
#> 110.23 sec elapsed

I will be happy with either of the following:

  1. Is there a speedier alternative to:
    rrapply(object = l, f = randomly_subset_vec)
    
  2. Or more generally, is there a speedier way to start with my_named_vec and arrive at l_subsetted?

Upvotes: 7

Views: 282

Answers (8)

jblood94
jblood94

Reputation: 16981

I'm putting this in a new answer so as to not further confuse my previous one.

I noticed from some of the comments that the vectors in l are intended to have all the same lengths (5) and that you may not need l at all. It's also a little unclear whether you want the lengths of l_subsetted to be between 0 and 4 or between 0 and 5. You also seem to be interested in the distribution of the lengths of l_subsetted (uniform vs. binomial).

Below is a generic function if length(unique(lengths(l))) == 1. It subsets directly from my_named_vec without creating l. It pretty consistently runs in the 5-13 second range.

set.seed(123)
vec_n <- 15e6L
my_named_vec <- setNames(1:vec_n, stringi::stri_rand_strings(vec_n, 5))

fSub <- function(nv, vecLen = 5L, maxLen = 5L, unif = FALSE) {
  # subset each named vector from the list l (l is not generated):
  # l <- unname(split(nv, rep_len(seq(length(nv)/vecLen), length(nv))))
  # INPUTS:
  #  nv: named vector whose length is a multiple of vecLen
  #  vecLen: the length of the vectors in l
  #  maxLen: the maximum length of the subsetted vectors
  #  unif: FALSE = binomial subset vector lengths
  #        TRUE = uniform subset vector lengths
  # OUTPUT: a list of named vectors subset from l
  
  nrw <- length(nv)%/%vecLen # length of the output list
  # get all possible logical indices for sampling each vector in l
  mKeep <- as.matrix(expand.grid(rep(list(c(TRUE, FALSE)), vecLen)), ncol = vecLen)
  nKeep <- rowSums(mKeep)
  # remove logical indices that would result in vectors greater than maxLen
  blnKeep <- nKeep <= maxLen
  mKeep <- mKeep[blnKeep,]
  nKeep <- nKeep[blnKeep]
  
  if (unif) {
    # sample mKeep with non-uniform probability in order to get uniform lengths
    iKeep <- sample(length(nKeep), nrw, replace = TRUE, prob = 1/choose(vecLen, nKeep))
  } else {
    iKeep <- sample(length(nKeep), nrw, replace = TRUE)
  }
  
  blnKeep <- c(mKeep[iKeep,])
  l <- rep(list(integer(0L)), nrw)
  l[iKeep != length(nKeep)] <- unname(split(nv[blnKeep], rep(1:nrw, vecLen)[blnKeep]))
  return(l)
}

lbinom5 <- fSub(my_named_vec) # binomial vector lengths (0 to 5)
lunif5 <- fSub(my_named_vec, unif = TRUE) # uniform vector lengths (0 to 5)
lbinom4 <- fSub(my_named_vec, maxLen = 4L) # binomial vector lenghts (0 to 4)
lunif4 <- fSub(my_named_vec, maxLen = 4L, unif = TRUE) # uniform vector lengths (0 to 4)

> microbenchmark::microbenchmark(
+   lbinom5 = {lbinom5 <- fSub(my_named_vec)},
+   lunif5 = {lunif5 <- fSub(my_named_vec, unif = TRUE)},
+   lbinom4 = {lbinom4 <- fSub(my_named_vec, maxLen = 4L)},
+   lunif4 = {lunif4 <- fSub(my_named_vec, maxLen = 4L, unif = TRUE)},
+   times = 10)
Unit: seconds
    expr      min       lq     mean    median       uq      max neval
 lbinom5 5.974837 8.060281 9.192600  9.014967 10.15609 13.01182    10
  lunif5 5.240133 6.618115 9.688577 10.799230 11.44718 12.73518    10
 lbinom4 5.082508 6.497218 8.636434  8.656817 11.40678 11.81519    10
  lunif4 5.468311 6.639423 8.310269  7.919579 10.28546 11.28075    10

Upvotes: 1

ThomasIsCoding
ThomasIsCoding

Reputation: 101568

You can try the code below

lapply(
  l,
  function(x) {
    head(sample(x), sample(length(x), 1))
  }
)

Upvotes: 0

jblood94
jblood94

Reputation: 16981

UPDATE 1 to fix the name behavior in stack for large objects

Your subsets don't include the full set, so this first removes a random element from each vector, then randomly retains all other elements:

library(stringi)

set.seed(123)
vec_n <- 15e6
vec_vals  <- 1:vec_n
vec_names <- stringi::stri_rand_strings(vec_n, 5)

my_named_vec <- setNames(vec_vals, vec_names)

split_func <- function(x, n) {
  unname(split(x, rep_len(1:n, length(x))))
}

l <- split_func(my_named_vec, n = vec_n / 5)
system.time({
  lenl <- lengths(l)
  # use stack to unlist the list while keeping the originating list index for each value
  vec_names <- names(unlist(l))
  blnKeep <- replace(sample(c(FALSE, TRUE), length(vec_names), replace = TRUE), ceiling(runif(length(l))*lenl) + c(0, head(cumsum(lenl), -1)), FALSE)
  temp <- stack(setNames(l, seq_along(l)))[blnKeep,]
  # re-list
  l_subsetted <- unname(split(setNames(temp$values, vec_names[blnKeep]), temp$ind))
})
#>    user  system elapsed 
#>  22.999   0.936  23.934
head(l_subsetted)
#> [[1]]
#>    HmPsw    nZmjN 
#>        1 12000001 
#> 
#> [[2]]
#>   2WtYS   6YjId 
#>       2 6000002 
#> 
#> [[3]]
#>   xSgZ6   jM5Uw   ujPOc 
#>       3 3000003 6000003 
#> 
#> [[4]]
#>   tF2Kx   r4ZCI 
#>       4 3000004 
#> 
#> [[5]]
#>    FYERK    NQfsF 
#>  6000005 12000005 
#> 
#> [[6]]
#>   gsY1u 
#> 3000006
Created on 2021-11-01 by the reprex package (v2.0.0)

UPDATE 2 for vectors of uniformly distributed lengths:

@runr is correct in the comments that the above code will result in binomially-distributed vector lengths, while the OP's original code results in uniformly-distributed vector lengths. Below is an example of how to use the same idea to get uniformly-distributed vector lengths. The code is more complex, but the run-time seems to be a bit faster (possibly due to circumventing stack):

library(stringi)
set.seed(123)
vec_n <- 15e6
vec_vals  <- 1:vec_n
vec_names <- stringi::stri_rand_strings(vec_n, 5)
my_named_vec <- setNames(vec_vals, vec_names)
split_func <- function(x, n) {
  unname(split(x, rep_len(1:n, length(x))))
}
l <- split_func(my_named_vec, n = vec_n / 5)

system.time({
  idx <- seq_along(l)
  lenl <- lengths(l)
  ul <- unlist(l)
  # get a random number of elements to remove from each vector
  nRemove <- ceiling(runif(length(l))*lenl)
  nRemove2 <- nRemove
  blnNotEmpty <- nRemove != lenl # will the subset vector have any elements?
  blnKeep <- rep(TRUE, length(l))
  
  # loop until the predetermined number of elements have been removed from each vector
  while (length(nRemove)) {
    # remove a random element from vectors that have too many
    ul <- ul[-(ceiling(runif(length(idx))*lenl[idx]) + c(0, head(cumsum(lenl), -1))[idx])]
    lenl[idx] <- lenl[idx] - 1L # decrement the vector lengths
    blnKeep <- nRemove != 1
    idx <- idx[blnKeep]
    nRemove <- nRemove[blnKeep] - 1L # decrement the number of elements left to remove
  }
  
  l_subsetted <- rep(list(integer(0)), length(l))
  l_subsetted[blnNotEmpty] <- unname(split(ul, rep.int(seq_along(l), lenl)))
})
#>    user  system elapsed 
#>  18.396   0.935  19.332
head(l_subsetted)
#> [[1]]
#>   Qk8NP   Quo3T   8f0GH 
#> 3000001 6000001 9000001 
#> 
#> [[2]]
#> integer(0)
#> 
#> [[3]]
#>    xSgZ6    ujPOc    CTV5F    5JRT5 
#>        3  6000003  9000003 12000003 
#> 
#> [[4]]
#>   tF2Kx   Ooklo   VOLHU 
#>       4 6000004 9000004 
#> 
#> [[5]]
#>    tgdze    w8d1B    jlClo    NQfsF 
#>        5  3000005  9000005 12000005 
#> 
#> [[6]]
#>    gsY1u    CjBwC    Oqqty    dxJ4c 
#>  3000006  6000006  9000006 12000006
# check that vector lengths are uniformly-distributed (lengths of 0-4 are equally likely)
table(lengths(l_subsetted))
#> 
#>      0      1      2      3      4 
#> 599633 599041 601209 600648 599469
Created on 2021-11-02 by the reprex package (v2.0.1)

Upvotes: 5

Joris C.
Joris C.

Reputation: 6234

More efficient is probably to replace the many individual sample calls by a single larger sample call. Below is an approach that samples a large logical matrix keep (since l initially has a rectangular format) and keep only the entries for which keep evaluates to TRUE:

system.time({
  keep <- matrix(sample(c(TRUE, FALSE), size = vec_n, replace = TRUE), nrow = 5, ncol = length(l))
  l1 <- lapply(seq_along(l), function(i) l[[i]][keep[, i]])
})

#>    user  system elapsed 
#>   8.667   0.448   9.114

head(l1)

#> [[1]]
#>   HmPsw   Quo3T   8f0GH 
#>       1 6000001 9000001 
#> 
#> [[2]]
#>   2WtYS   ZaHFl   6YjId 
#>       2 3000002 6000002 
#> 
#> [[3]]
#>    xSgZ6    jM5Uw    ujPOc    CTV5F    5JRT5 
#>        3  3000003  6000003  9000003 12000003 
#> 
#> [[4]]
#>    M6z6H 
#> 12000004 
#> 
#> [[5]]
#>    tgdze    w8d1B    FYERK    jlClo    NQfsF 
#>        5  3000005  6000005  9000005 12000005 
#> 
#> [[6]]
#>   hXaH9   CjBwC   Oqqty 
#>       6 6000006 9000006

NB: here the order of the entries in l stays the same (i.e. no resampling), also list elements of l1 are not guaranteed to contain at least one value.

Upvotes: 1

runr
runr

Reputation: 1146

It seems that the largest bottleneck is running all the sample calls, so we could try the following. One way, is the solution by Julius Vainora. First, we generate funFast by Rcpp:

library(inline)
library(Rcpp)
src <- 
'
int num = as<int>(size), x = as<int>(n);
Rcpp::NumericVector vx = Rcpp::clone<Rcpp::NumericVector>(x);
Rcpp::NumericVector pr = Rcpp::clone<Rcpp::NumericVector>(prob);
Rcpp::NumericVector rnd = rexp(x) / pr;
for(int i= 0; i<vx.size(); ++i) vx[i] = i;
std::partial_sort(vx.begin(), vx.begin() + num, vx.end(), Comp(rnd));
vx = vx[seq(0, num - 1)] + 1;
return vx;
'
incl <- 
'
struct Comp{
  Comp(const Rcpp::NumericVector& v ) : _v(v) {}
  bool operator ()(int a, int b) { return _v[a] < _v[b]; }
  const Rcpp::NumericVector& _v;
};
'
funFast <- cxxfunction(signature(n = "Numeric", size = "integer", prob = "numeric"),
                       src, plugin = "Rcpp", include = incl)

Then, define an alternative to your randomly_subset_vec using funFast instead of sample:

'randomly_subset_vec_2' <- function(x) {
  range <- length(x)
  probs <- rep(1/range, range)
  
  o <- funFast(range, size = funFast(range, size = 1, prob = probs), prob = probs)
  return(x[-o])
}

tic();obj <- rrapply(object = l, f = randomly_subset_vec_2);toc();

Upvotes: 2

GuedesBF
GuedesBF

Reputation: 9858

Maybe we can replace randomly_subset_vec with something simpler with sample and sample.int:

lapply(l, function(x) x[sample.int(5, sample(5, 1))])

Upvotes: 1

Rui Barradas
Rui Barradas

Reputation: 76440

Simplify the sampling function:

randomly_subset_vec_2 <- function(x) {
  my_range <- length(x)
  x[-sample(my_range, sample(my_range, 1))]
}

This alone can give a significant speed-up.
And though I have not tested it, given the problem description, to remove some elements (minus sign before sample) is to keep the others. Why not extract some elements (no minus sign) thereby keeping those?


Simpler and faster: To sample directly from x is the fastest so far.

randomly_subset_vec_3 <- function(x) {
  sample(x, sample(length(x), 1))
}

Upvotes: 2

Dason
Dason

Reputation: 61933

Very rough and I'm not particularly proud of this. I'm sure there is a more elegant way but this ran in the matter of seconds on my machine

> # Make some fake data
> out <- lapply(1:3000000, function(i){sample(LETTERS, 5, replace = FALSE)})
> out[1:5]
[[1]]
[1] "D" "H" "C" "Y" "V"

[[2]]
[1] "M" "E" "H" "G" "S"

[[3]]
[1] "R" "P" "O" "L" "M"

[[4]]
[1] "C" "U" "G" "Q" "X"

[[5]]
[1] "Q" "L" "W" "O" "V"

> # Create list with ids to sample
> id <- lapply(1:3000000, function(i){sample(1:5, sample(1:5, 1), replace = FALSE)})
> id[1:5]
[[1]]
[1] 2

[[2]]
[1] 2 3 4 1 5

[[3]]
[1] 4

[[4]]
[1] 5

[[5]]
[1] 1 2

> # Extract the ids from the original data using the id list.
> # Like I said I'm not particularly proud of this but it gets the job
> # done quick enough on my computer
> out <- lapply(1:3000000, function(i){out[[i]][id[[i]]]})
> out[1:5]
[[1]]
[1] "H"

[[2]]
[1] "E" "H" "G" "M" "S"

[[3]]
[1] "L"

[[4]]
[1] "X"

[[5]]
[1] "Q" "L"

Upvotes: 2

Related Questions