Reputation: 6323
Let's say I have three statsmodels OLS
objects that I want to compare side by side. I can use summary_col
to create a summary table that I can print out as text or export to latex.
How can I export this table as csv?
Here's a replicable example of what I want to do:
# Libraries
import pandas as pd
import statsmodels.api as sm
from statsmodels.iolib.summary2 import summary_col
# Load silly data and add constant
df = sm.datasets.stackloss.load_pandas().data
df['CONSTANT'] = 1
# Train three silly models
m0 = sm.OLS(df['STACKLOSS'], df[['CONSTANT','AIRFLOW']]).fit()
m1 = sm.OLS(df['STACKLOSS'], df[['CONSTANT','AIRFLOW','WATERTEMP']]).fit()
m2 = sm.OLS(df['STACKLOSS'], df[['CONSTANT','AIRFLOW','WATERTEMP','ACIDCONC']]).fit()
# Results table
res = summary_col([m0,m1,m2], regressor_order=m2.params.index.tolist())
print(res)
================================================
STACKLOSS I STACKLOSS II STACKLOSS III
------------------------------------------------
CONSTANT -44.1320 -50.3588 -39.9197
(6.1059) (5.1383) (11.8960)
AIRFLOW 1.0203 0.6712 0.7156
(0.1000) (0.1267) (0.1349)
WATERTEMP 1.2954 1.2953
(0.3675) (0.3680)
ACIDCONC -0.1521
(0.1563)
================================================
Standard errors in parentheses.
Is there a way to export res
to csv?
Upvotes: 2
Views: 8574
Reputation: 46888
The results are stored as a list of data frames:
res.tables
[ STACKLOSS I STACKLOSS II STACKLOSS III
CONSTANT -44.1320 -50.3588 -39.9197
(6.1059) (5.1383) (11.8960)
AIRFLOW 1.0203 0.6712 0.7156
(0.1000) (0.1267) (0.1349)
WATERTEMP 1.2954 1.2953
(0.3675) (0.3680)
ACIDCONC -0.1521
(0.1563)
R-squared 0.8458 0.9088 0.9136
R-squared Adj. 0.8377 0.8986 0.8983]
This should work:
res.tables[0].to_csv("test.csv")
pd.read_csv("test.csv")
Unnamed: 0 STACKLOSS I STACKLOSS II STACKLOSS III
0 CONSTANT -44.1320 -50.3588 -39.9197
1 NaN (6.1059) (5.1383) (11.8960)
2 AIRFLOW 1.0203 0.6712 0.7156
3 NaN (0.1000) (0.1267) (0.1349)
4 WATERTEMP NaN 1.2954 1.2953
5 NaN NaN (0.3675) (0.3680)
6 ACIDCONC NaN NaN -0.1521
7 NaN NaN NaN (0.1563)
8 R-squared 0.8458 0.9088 0.9136
9 R-squared Adj. 0.8377 0.8986 0.8983
Upvotes: 3