Reputation: 37
Before posting my question, I would like to emphasize that I did find similar things here but nothing quite like what I need.
I am dealing with FASTA files, more precisely with the FASTA headers, which look like this: sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus OX=9913 GN=C3 PE=1 SV=2
I need to extract the bolded text. The first bolded text is the protein name. The second bold is the gene name. Please, note that they vary, and I start the analysis with multiple fasta headers inside the same string. Only the first header matters, the rest is crap. Here is an example:
> proteinGroups$Fasta.headers
[1] "sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus OX=9913 GN=C3 PE=1 SV=2;tr|A0A0F6QNP7|A0A0F6QNP7_BOVIN C3-beta-c OS=Bos taurus OX=9913 GN=C3 PE=2 SV=1;tr|A0A3Q1MHV6|A0A3Q1MHV6_BOVIN C3-beta-c OS=Bos taurus OX=9913 GN=C3 PE=1 SV=1;tr|A0A3Q1M2B2|A0A3Q1M2B2_B"
[2] "tr|A0A3Q1MB98|A0A3Q1MB98_BOVIN Haptoglobin OS=Bos taurus OX=9913 GN=HP PE=3 SV=1;sp|Q2TBU0|HPT_BOVIN Haptoglobin OS=Bos taurus OX=9913 GN=HP PE=2 SV=1;tr|A0A0M4MD57|A0A0M4MD57_BOVIN Haptoglobin OS=Bos taurus OX=9913 GN=HP PE=2 SV=1;tr|G3X6K8|G3X6K8_BOVIN H"
[3] "tr|A0A3Q1LH05|A0A3Q1LH05_BOVIN Anion exchange protein OS=Bos taurus OX=9913 GN=SLC4A7 PE=3 SV=1"
[4] "sp|P81282-4|CSPG2_BOVIN Isoform V3 of Versican core protein OS=Bos taurus OX=9913 GN=VCAN;sp|P81282-3|CSPG2_BOVIN Isoform V2 of Versican core protein OS=Bos taurus OX=9913 GN=VCAN;tr|F1MZ83|F1MZ83_BOVIN Versican core protein OS=Bos taurus OX=9913 GN=VCAN P"
[5] "tr|A6QNZ7|A6QNZ7_BOVIN Keratin 10 (Epidermolytic hyperkeratosis; keratosis palmaris et plantaris) OS=Bos taurus OX=9913 GN=KRT10 PE=2 SV=1;sp|P06394|K1C10_BOVIN Keratin, type I cytoskeletal 10 OS=Bos taurus OX=9913 GN=KRT10 PE=3 SV=1"
As you may have noticed, some protein names are almost an entire phrase, others are just a single word. The same goes for the genes, which are not always 2 characters, reaching up to 6 characters in this example.
Using the info I found here, I was able to build a Frankenstein of a code, but probably far from ideal:
library(stringr)
library(reshape2)
#split the protein name from the other delimiters
fasta.header <- str_split(proteinGroups$Fasta.headers, "(?=OS=)")
#discard the additional fasta headers
protGene <- sapply(fasta.header, "[", c(1,2))
#invert the orientation and change to DF
protGene <- as.data.frame(t(protGene))
#rename columns
colnames(protGene) <- c("protein.name", "gene")
#discard the extra info and keep protein name only
protGene$protein.name <- colsplit(protGene$protein.name, " ", c("X1","X2"))[2]
#split the crap that came along with the additional headers in the first step
temp1 <- strsplit(protGene$gene, ";")
#assign cleaner values to the table
protGene$gene <- sapply(temp1, "[", 1)
#split the rest of the annotation
temp2 <- strsplit(protGene$gene, "OS=| OX=| GN=| PE=| SV=")
#assign gene name to the table
protGene$gene <- sapply(temp2, "[", 4)
I was able to get the data, but I feel this is far from robust or optimized. Any ideas on what to change?
Thank you in advance!
Upvotes: 1
Views: 106
Reputation: 16988
I'm not sure, if this is what you are looking for. Suppose, your data is stored in a data.frame named proteinGroups
and the headers are in column Fasta.headers
.
library(stringr)
library(dplyr)
proteinGroups %>%
tibble() %>%
mutate(string = str_split(Fasta.headers, ";[a-z]{2}\\|[A-Z0-9\\-]*\\|"),
rn = row_number()) %>%
unnest_longer(string) %>%
mutate(
protein_name = ifelse(str_detect(string, ".*_BOVIN\\s(.*?)\\sOS=.*"),
str_replace(string, ".*_BOVIN\\s(.*?)\\sOS=.*", "\\1"),
NA_character_),
gene = ifelse(str_detect(string, ".*GN=([A-Z0-9]*).*"),
str_replace(string, ".*GN=([A-Z0-9]*).*", "\\1"),
NA_character_),
.keep = "unused"
)
We split the strings at a pattern that looks like ;tr|A0A0F6QNP7|
or ;sp|P81282-3|
into smaller chunks.
_BOVIN
and OS=
. That's the protein' s name.GN=
that matches a mix from upper case letters and numbers. That's the gene.So this returns
# A tibble: 14 x 4
Fasta.headers rn protein_name gene
<chr> <int> <chr> <chr>
1 sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus ~ 1 Complement C3 C3
2 sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus ~ 1 C3-beta-c C3
3 sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus ~ 1 C3-beta-c C3
4 sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus ~ 1 NA NA
5 tr|A0A3Q1MB98|A0A3Q1MB98_BOVIN Haptoglobin OS=Bo~ 2 Haptoglobin HP
6 tr|A0A3Q1MB98|A0A3Q1MB98_BOVIN Haptoglobin OS=Bo~ 2 Haptoglobin HP
7 tr|A0A3Q1MB98|A0A3Q1MB98_BOVIN Haptoglobin OS=Bo~ 2 Haptoglobin HP
8 tr|A0A3Q1MB98|A0A3Q1MB98_BOVIN Haptoglobin OS=Bo~ 2 NA NA
9 tr|A0A3Q1LH05|A0A3Q1LH05_BOVIN Anion exchange pr~ 3 Anion exchange protein SLC4~
10 sp|P81282-4|CSPG2_BOVIN Isoform V3 of Versican c~ 4 Isoform V3 of Versican core protein VCAN
11 sp|P81282-4|CSPG2_BOVIN Isoform V3 of Versican c~ 4 Isoform V2 of Versican core protein VCAN
12 sp|P81282-4|CSPG2_BOVIN Isoform V3 of Versican c~ 4 Versican core protein VCAN
13 tr|A6QNZ7|A6QNZ7_BOVIN Keratin 10 (Epidermolytic~ 5 Keratin 10 (Epidermolytic hyperkerat~ KRT10
14 tr|A6QNZ7|A6QNZ7_BOVIN Keratin 10 (Epidermolytic~ 5 Keratin, type I cytoskeletal 10 KRT10
Since only the first header matters, the rest is crap, we just take the first row per string
proteinGroups %>%
tibble() %>%
mutate(string = str_split(Fasta.headers, ";[a-z]{2}\\|[A-Z0-9\\-]*\\|"),
rn = row_number()) %>%
unnest_longer(string) %>%
mutate(
protein_name = ifelse(str_detect(string, ".*_BOVIN\\s(.*?)\\sOS=.*"),
str_replace(string, ".*_BOVIN\\s(.*?)\\sOS=.*", "\\1"),
NA_character_),
gene = ifelse(str_detect(string, ".*GN=([A-Z0-9]*).*"),
str_replace(string, ".*GN=([A-Z0-9]*).*", "\\1"),
NA_character_),
.keep = "unused"
) %>%
group_by(rn) %>%
slice(1) %>%
ungroup() %>%
select(-rn)
to get
# A tibble: 5 x 3
Fasta.headers protein_name gene
<chr> <chr> <chr>
1 sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus OX=9~ Complement C3 C3
2 tr|A0A3Q1MB98|A0A3Q1MB98_BOVIN Haptoglobin OS=Bos ta~ Haptoglobin HP
3 tr|A0A3Q1LH05|A0A3Q1LH05_BOVIN Anion exchange protei~ Anion exchange protein SLC4~
4 sp|P81282-4|CSPG2_BOVIN Isoform V3 of Versican core ~ Isoform V3 of Versican core protein VCAN
5 tr|A6QNZ7|A6QNZ7_BOVIN Keratin 10 (Epidermolytic hyp~ Keratin 10 (Epidermolytic hyperkeratosi~ KRT10
Upvotes: 1