Reputation: 33
I have the exact same problem as https://github.com/huggingface/transformers/issues/11243, except it only does not work in Jupyter lab. It does work in python in my shell. EDIT: It is now not working in shell either after I closed and reopened the shell.
I downloaded the cardiffnlp/twitter-roberta-base-emotion
model using:
model_name = "cardiffnlp/twitter-roberta-base-emotion"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
I saved the model with model.save_pretrained(model_name)
and now I can't load the tokenizer. If I run:
tokenizer = AutoTokenizer.from_pretrained(model_name)
it gives the error:
OSError: Can't load tokenizer for 'cardiffnlp/twitter-roberta-base-emotion'. Make sure that:
- 'cardiffnlp/twitter-roberta-base-emotion' is a correct model identifier listed on 'https://huggingface.co/models'
(make sure 'cardiffnlp/twitter-roberta-base-emotion' is not a path to a local directory with something else, in that case)
- or 'cardiffnlp/twitter-roberta-base-emotion' is the correct path to a directory containing relevant tokenizer files
Because I saved the model and not the tokenizer yesterday, I can't load the tokenizer anymore. What can I do to fix this? I don't understand how to save the tokenizer if I can't load the tokenizer.
Upvotes: 0
Views: 2783
Reputation: 15588
The model and tokenizer are two different things yet do share the same location to which you download them. You need to save both the tokenizer and the model. I wrote a simple utility to help.
import typing as t
from loguru import logger
from pathlib import Path
import torch
from transformers import PreTrainedModel
from transformers import PreTrainedTokenizer
class ModelLoader:
"""ModelLoader
Downloading and Loading Hugging FaceModels
Download occurs only when model is not located in the local model directory
If model exists in local directory, load.
"""
def __init__(
self,
model_name: str,
model_directory: str,
tokenizer_loader: PreTrainedTokenizer,
model_loader: PreTrainedModel,
):
self.model_name = Path(model_name)
self.model_directory = Path(model_directory)
self.model_loader = model_loader
self.tokenizer_loader = tokenizer_loader
self.save_path = self.model_directory / self.model_name
if not self.save_path.exists():
logger.debug(f"[+] {self.save_path} does not exit!")
self.save_path.mkdir(parents=True, exist_ok=True)
self.__download_model()
self.tokenizer, self.model = self.__load_model()
def __repr__(self):
return f"{self.__class__.__name__}(model={self.save_path})"
# Download model from HuggingFace
def __download_model(self) -> None:
logger.debug(f"[+] Downloading {self.model_name}")
tokenizer = self.tokenizer_loader.from_pretrained(f"{self.model_name}")
model = self.model_loader.from_pretrained(f"{self.model_name}")
logger.debug(f"[+] Saving {self.model_name} to {self.save_path}")
tokenizer.save_pretrained(f"{self.save_path}")
model.save_pretrained(f"{self.save_path}")
logger.debug("[+] Process completed")
# Load model
def __load_model(self) -> t.Tuple:
logger.debug(f"[+] Loading model from {self.save_path}")
tokenizer = self.tokenizer_loader.from_pretrained(f"{self.save_path}")
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"[+] Model loaded in {device} complete")
model = self.model_loader.from_pretrained(f"{self.save_path}").to(device)
logger.debug("[+] Loading completed")
return tokenizer, model
def retrieve(self) -> t.Tuple:
"""Retriver
Returns:
Tuple: tokenizer, model
"""
return self.tokenizer, self.model
You can use it as
…
model_name = "cardiffnlp/twitter-roberta-base-emotion"
model_directory = "/tmp" # or where you want to store models
tokenizer_loader = AutoTokenizer
model_loader = AutoModelForSequenceClassification
get_model = ModelLoader(model_name=model_name, model_directory=model_directory, tokenizer_loader=tokenizer_loader, model_loader=model_loader)
model, tokenizer = get_model.retrieve()
Upvotes: 0