Reputation: 173
The documentation for the multinom() function from the nnet package in R says that it "[f]its multinomial log-linear models via neural networks" and that "[t]he response should be a factor or a matrix with K columns, which will be interpreted as counts for each of K classes." Even when I go to add a tag for nnet on this question, the description says that it is software for fitting "multinomial log-linear models."
Granting that statistics has wildly inconsistent jargon that is rarely operationally defined by whoever is using it, the documentation for the function even mentions having a count response and so seems to indicate that this function is designed to model count data. Yet virtually every resource I've seen treats it exclusively as if it were fitting a multinomial logistic regression. In short, everyone interprets the results in terms of logged odds relative to the reference (as in logistic regression), not in terms of logged expected count (as in what is typically referred to as a log-linear model).
Can someone clarify what this function is actually doing and what the fitted coefficients actually mean?
Upvotes: 4
Views: 2062
Reputation: 7989
nnet::multinom
is fitting a multinomial logistic regression as I understand...
If you check the source code of the package, https://github.com/cran/nnet/blob/master/R/multinom.R and https://github.com/cran/nnet/blob/master/R/nnet.R, you will see that the multinom function is indeed using counts (which is a common thing to use as input for a multinomial regression model, see also the MGLM
or mclogit
package e.g.), and that it is fitting the multinomial regression model using a softmax transform to go from predictions on the additive log-ratio scale to predicted probabilities. The softmax transform is indeed the inverse link scale of a multinomial regression model. The way the multinom model predictions are obtained, cf.predictions from nnet::multinom, is also exactly as you would expect for a multinomial regression model (using an additive log-ratio scale parameterization, i.e. using one outcome category as a baseline).
That is, the coefficients predict the logged odds relative to the reference baseline category (i.e. it is doing a logistic regression), not the logged expected counts (like a log-linear model).
This is shown by the fact that model predictions are calculated as
fit <- nnet::multinom(...)
X <- model.matrix(fit) # covariate matrix / design matrix
betahat <- t(rbind(0, coef(fit))) # model coefficients, with expicit zero row added for reference category & transposed
preds <- mclustAddons::softmax(X %*% betahat)
Furthermore, I verified that the vcov
matrix returned by nnet::multinom
matches that when I use the formula for the vcov
matrix of a multinomial regression model, Faster way to calculate the Hessian / Fisher Information Matrix of a nnet::multinom multinomial regression in R using Rcpp & Kronecker products.
Is it not the case that a multinomial regression model can always be reformulated as a Poisson loglinear model (i.e. as a Poisson GLM) using the Poisson trick (glmnet
e.g. uses the Poisson trick to fit multinomial regression models as a Poisson GLM)?
Upvotes: -1