Reputation: 25
Is it possible to solve Cubic equation without using sympy?
Example:
import sympy as sp
xp = 30
num = xp + 4.44
sp.var('x, a, b, c, d')
Sol3 = sp.solve(0.0509 * x ** 3 + 0.0192 * x ** 2 + 3.68 * x - num, x)
The result is:
[6.07118098358257, -3.2241955998463 - 10.0524891203436*I, -3.2241955998463 + 10.0524891203436*I]
But I want to find a way to do it with numpy or without 3 part lib at all
I tried with numpy:
import numpy as np
coeff = [0.0509, 0.0192, 3.68, --4.44]
print(np.roots(coeff))
But the result is :
[ 0.40668245+8.54994773j 0.40668245-8.54994773j -1.19057511+0.j]
Upvotes: 2
Views: 2580
Reputation: 42143
You could implement the cubic formula
this Youtube video from mathologer could help understand it.
Based on that, the cubic function for ax^3 + bx^2 + cx + d = 0 can be written like this:
def cubic(a,b,c,d):
n = -b**3/27/a**3 + b*c/6/a**2 - d/2/a
s = (n**2 + (c/3/a - b**2/9/a**2)**3)**0.5
r0 = (n-s)**(1/3)+(n+s)**(1/3) - b/3/a
r1 = (n+s)**(1/3)+(n+s)**(1/3) - b/3/a
r2 = (n-s)**(1/3)+(n-s)**(1/3) - b/3/a
return (r0,r1,r2)
The simplified version of the formula only needs to get c and d as parameters (aka p and q) and can be implemented like this:
def cubic(p,q):
n = -q/2
s = (q*q/4+p**3/27)**0.5
r0 = (n-s)**(1/3)+(n+s)**(1/3)
r1 = (n+s)**(1/3)+(n+s)**(1/3)
r2 = (n-s)**(1/3)+(n-s)**(1/3)
return (r0,r1,r2)
print(cubic(-15,-126))
(5.999999999999999, 9.999999999999998, 2.0)
I'll let you mix in complex number operations to properly get all 3 roots
Upvotes: 1
Reputation: 147
In your numpy method you are making two slight mistakes with the final coefficient.
In the SymPy
example your last coefficient is - num
, this is, according to your code: -num = - (xp + 4.44) = -(30 + 4.44) = -34.44
In your NumPy
example yout last coefficient is --4.44
, which is 4.44
and does not equal -34.33
.
If you edit the NumPy
code you will get:
import numpy as np
coeff = [0.0509, 0.0192, 3.68, -34.44]
print(np.roots(coeff))
[-3.2241956 +10.05248912j -3.2241956 -10.05248912j
6.07118098 +0.j ]
The answer are thus the same (note that NumPy
uses j
to indicate a complex number. SymPy
used I
)
Upvotes: 4