Reputation: 53
I want to perform linear regressions of Feature_A and I want the user to select the other variable dynamically. I also want to display statistics about my overall predictive model fit adjusted R2, each model estimated parameter coefficient, and coefficient p-values.
Below is what I could come up with. Needless to say it does not work. I have been struggling with it and any help will be very greatly appreciated
library(shiny)
library(ggplot2)
library(dplyr)
library(purrr)
Feature_A <- c(1, 2,1, 4,2)
Feature_B <- c(4,5,6,6,6)
Feature_C <- c(22,4,3,1,5)
df<- data.frame(Feature_A ,Feature_B ,Feature_C)
# Define UI for application
ui= fluidPage(
# Header or Title Panel
titlePanel(title = h4("Regression")),
sidebarLayout(
# Sidebar panel
sidebarPanel(
selectInput('ip', 'Select an Explanatory Variable', names(df)),
actionButton(inputId = "btn1",label="Regression Plot"),
actionButton(inputId = "btn2",label="Show Stats")),
# Main Panel
mainPanel("main panel", regOutput("regplot"),
verbatimTextOutput("summary"))
))
server = function(input, output,session) {
#code for regression
lm_fit <- lm(Feature_A ~ input$ip, data=df)
summary_stats <- eventReactive(input$btn2,{summary(lm_fit)
})
regression_plot<- eventReactive(input$btn1,{ggplot(data = df, aes(x = input$ip, y = Feature_A)) +
geom_point(color='blue') +
geom_smooth(method = "lm", se = FALSE)
})
#end of regression code
output$regplot <- renderPlot({
regression_plot()
})
output$summary <- renderPrint({
summary_stats()
})
}
shinyApp(ui,server)
Upvotes: 0
Views: 582
Reputation: 8567
A few things are wrong here:
regOutput
is not an existing command, you want plotOutput
instead.lm_fit <- lm(Feature_A ~ input$ip, data=df)
should be in a reactive since it uses input$ip
. This means you need lm_fit()
to get the results, and not lm_fit
.input$ip
is a character, and lm()
requires a formula
. Therefore, you need to wrap the whole formula in as.formula
.This should work now, the plot is a bit strange but I think it's due to your simplified example:
library(shiny)
library(ggplot2)
library(dplyr)
library(purrr)
Feature_A <- c(1, 2,1, 4,2)
Feature_B <- c(4,5,6,6,6)
Feature_C <- c(22,4,3,1,5)
df<- data.frame(Feature_A ,Feature_B ,Feature_C)
# Define UI for application
ui= fluidPage(
# Header or Title Panel
titlePanel(title = h4("Regression")),
sidebarLayout(
# Sidebar panel
sidebarPanel(
selectInput('ip', 'Select an Explanatory Variable', names(df)),
actionButton(inputId = "btn1",label="Regression Plot"),
actionButton(inputId = "btn2",label="Show Stats")),
# Main Panel
mainPanel("main panel", plotOutput("regplot"),
verbatimTextOutput("summary"))
))
server = function(input, output,session) {
#code for regression
lm_fit <- reactive({
lm(as.formula(paste0("Feature_A ~ ", input$ip)), data=df)
})
summary_stats <- eventReactive(input$btn2,{
summary(lm_fit())
})
regression_plot<- eventReactive(input$btn1, {
ggplot(data = df, aes(x = input$ip, y = Feature_A)) +
geom_point(color='blue') +
geom_smooth(method = "lm", se = FALSE)
})
#end of regression code
output$regplot <- renderPlot({
regression_plot()
})
output$summary <- renderPrint({
summary_stats()
})
}
shinyApp(ui,server)
Upvotes: 1