Reputation: 25
I'm trying convert a spark dataframe to JSON. There are about 1 millions rows in this dataframe and the sample code is below, but the performance is really bad. The desired output would be one member_id
shows one time in the JSON file, same for the tag_name
under one member_id
. Please let me know if any possible way to do this faster.
Sample Code:
iresult = sdf.groupBy('member_id','tag_name').agg(ch.collect_list(ch.struct('detail_name','detail_value')).alias('detail')).\
groupBy('member_id').agg(ch.collect_list(ch.struct('tag_name','detail')).alias('tag'))\
.agg(ch.to_json(ch.collect_list(ch.struct('member_id','tag'))).alias('result'))
result.show()
detail.csv:
member_id, tag_name, detail_name, detail_value
-------------------------------------------------------
abc123, m1, Service_A, 20
abc123, m1, Service_B, 20
abc123, m2, Service_C, 10
xyz456, m3, Service A, 5
xyz456, m3, Service A, 10
Desired Output JSON:
{ "member_id": "abc123",
"tag":[ {"tag_name": "m1",
"detail":[{ "detail_name": "Service_A",
"detail_value": "20"},
{ "detail_name": "Service_B",
"detail_value": "20"}]},
{"tag_name": "m2",
"detail":[{ "detail_name": "Service_C",
"detail_value": "10"}]}]},
{ "member_id": "xyz456",
"tag":[{"tag_name": "m3",
"detail":[{ "detail_name": "Service_A",
"detail_value": "5"},
{ "detail_name": "Service_A",
"detail_value": "10"}]}]}
duplicate.csv:
member_id, tag_name, detail_name, detail_value
-------------------------------------------------------
abc123, m1, problem_no, 'abc123xyz'
abc123, m1, problem_no, 'abc456zzz'
xyz456, m1, problem_no, 'abc123xyz'
xyz456, m1, problem_no, 'abc456zzz'
Duplicate Output JSON:
{ "member_id": "abc123",
"tag":[ {"tag_name": "m1",
"detail":[{ "detail_name": "problem_no",
"detail_value": "abc123xyz"},
{ "detail_name": "problem_no",
"detail_value": "abc456zzz"},
{ "detail_name": "problem_no",
"detail_value": "abc123xyz"},
{ "detail_name": "problem_no",
"detail_value": "abc456zzz"}]}]},
{ "member_id": "xyz456",
"tag":[ {"tag_name": "m1",
"detail":[{ "detail_name": "problem_no",
"detail_value": "abc123xyz"},
{ "detail_name": "problem_no",
"detail_value": "abc456zzz"},
{ "detail_name": "problem_no",
"detail_value": "abc123xyz"},
{ "detail_name": "problem_no",
"detail_value": "abc456zzz"}]}]}
Upvotes: 0
Views: 2241
Reputation: 4244
Do you mind implementing it through sql statement?
Construct struct
layer by layer, and finally use to_json
function to generate json string.
df.createOrReplaceTempView('tmp')
sql = """
select to_json(collect_list(struct(member_id,tag))) as member
from
(select member_id,collect_list(struct(tag_name,detail)) as tag
from
(select member_id,tag_name,collect_list(struct(detail_name,detail_value)) as detail
from tmp
group by member_id,tag_name)
group by member_id)
"""
df = spark.sql(sql)
df.show(truncate=False)
Upvotes: 2