Reputation:
I'm trying to implement L-system as functions. For example, dragon curve looks like this:
static String F(int n) {
return n == 0 ? "F" : F(n - 1) + "+" + G(n -1);
}
static String G(int n) {
return n == 0 ? "G" : F(n - 1) + "-" + G(n -1);
}
@Test
void testDragonCurveAsStaticFunction() {
assertEquals("F", F(0));
assertEquals("F+G", F(1));
assertEquals("F+G+F-G", F(2));
assertEquals("F+G+F-G+F+G-F-G", F(3));
}
I want to implement this with lambda functions. I got the following implementation by referring to recursion - Implement recursive lambda function using Java 8 - Stack Overflow.
@Test
void testDragonCurveAsLambdaFunction() {
interface IntStr { String apply(int i); }
IntStr[] f = new IntStr[2];
f[0] = n -> n == 0 ? "F" : f[0].apply(n - 1) + "+" + f[1].apply(n - 1);
f[1] = n -> n == 0 ? "G" : f[0].apply(n - 1) + "-" + f[1].apply(n - 1);
assertEquals("F", f[0].apply(0));
assertEquals("F+G", f[0].apply(1));
assertEquals("F+G+F-G", f[0].apply(2));
assertEquals("F+G+F-G+F+G-F-G", f[0].apply(3));
}
Is there a way to implement this without using an array?
But I want to create a generic L-System, so I don't want to define a new class, interface or method for the dragon curve.
Upvotes: 2
Views: 150
Reputation:
I found a solution that uses Map.
@FunctionalInterface
interface IntStr {
String apply(int n);
static IntStr cond(String then, IntStr... otherwise) {
return n -> n == 0 ? then
: Stream.of(otherwise)
.map(f -> f.apply(n - 1))
.collect(Collectors.joining());
}
static IntStr constant(String string) {
return n -> string;
}
static IntStr call(Map<String, IntStr> map, String functionName) {
return n -> map.get(functionName).apply(n);
}
}
and
@Test
void testDragonCurveAsLambda() {
Map<String, IntStr> map = new HashMap<>();
map.put("F", IntStr.cond("F",
IntStr.call(map, "F"),
IntStr.constant("+"),
IntStr.call(map, "G")));
map.put("G", IntStr.cond("G",
IntStr.call(map, "F"),
IntStr.constant("-"),
IntStr.call(map, "G")));
IntStr f = map.get("F");
assertEquals("F", f.apply(0));
assertEquals("F+G", f.apply(1));
assertEquals("F+G+F-G", f.apply(2));
assertEquals("F+G+F-G+F+G-F-G", f.apply(3));
}
Upvotes: 1
Reputation: 19545
I tried implementing it using a class combining two IntStr
fields set via constructor or setters:
interface IntStr {
String apply(Integer i);
}
class Recursive {
IntStr other;
IntStr curr;
public Recursive() {}
public Recursive(String p1, String s1, String p2, String s2) {
this.curr = n -> n == 0 ? p1 : curr.apply(n - 1) + s1 + other.apply(n - 1);
this.other = n -> n == 0 ? p2 : curr.apply(n - 1) + s2 + other.apply(n - 1);
}
public void setCurr(String p, String s) {
this.curr = n -> n == 0 ? p : curr.apply(n - 1) + s + other.apply(n - 1);
}
public void setOther(String p, String s) {
this.other = n -> n == 0 ? p : curr.apply(n - 1) + s + other.apply(n - 1);
}
}
Then the following code succeeded:
void testDragonCurveAsLambdaFunction() {
Recursive f1 = new Recursive("F", "+", "G", "-");
// or using setters
// f1.setCurr("F", "+");
// f1.setOther("G", "-");
assertEquals("F", f1.curr.apply(0));
assertEquals("F+G", f1.curr.apply(1));
assertEquals("F+G+F-G", f1.curr.apply(2));
assertEquals("F+G+F-G+F+G-F-G", f1.curr.apply(3));
}
An example using AtomicReference
as a container for IntStr
reference without creating Recursive
class:
void testDragonCurveAsLambdaFunction() {
AtomicReference<IntStr>
curr = new AtomicReference<>(),
other = new AtomicReference<>();
curr.set(n -> n == 0 ? "F" : curr.get().apply(n - 1) + "+" + other.get().apply(n - 1));
other.set(n -> n == 0 ? "G" : curr.get().apply(n - 1) + "-" + other.get().apply(n - 1));
assertEquals("F", curr.get().apply(0));
assertEquals("F+G", curr.get().apply(1));
assertEquals("F+G+F-G", curr.get().apply(2));
assertEquals("F+G+F-G+F+G-F-G", curr.get().apply(3));
}
Upvotes: 0