smith
smith

Reputation: 128

optimize function python dataframe

I have this python code of the supertrend implementation. i am using pandas dataframe. the code works fine but, the supertrend function runs slower and slower as the dataframe increases in length. I was wondering if there is anything I could change in the code to optimize it and make it go faster even with a large dataframe length.

def trueRange(df):
    df['prevClose'] = df['close'].shift(1)
    df['high-low'] = df['high'] - df['low']
    df['high-pClose'] = abs(df['high'] - df['prevClose'])
    df['low-pClose'] = abs(df['low'] - df['prevClose'])
    tr = df[['high-low','high-pClose','low-pClose']].max(axis=1)
    
    return tr

def averageTrueRange(df, peroid=12):
    df['trueRange'] = trueRange(df)
    the_atr = df['trueRange'].rolling(peroid).mean()
    
    return the_atr
    

def superTrend(df, peroid=5, multipler=1.5):
    df['averageTrueRange'] = averageTrueRange(df, peroid=peroid)
    h2 = ((df['high'] + df['low']) / 2)
    df['Upperband'] = h2 + (multipler * df['averageTrueRange'])
    df['Lowerband'] = h2 - (multipler * df['averageTrueRange'])
    df['inUptrend'] = None

    for current in range(1,len(df.index)):
        prev = current- 1
        
        if df['close'][current] > df['Upperband'][prev]:
            df['inUptrend'][current] = True
            
        elif df['close'][current] < df['Lowerband'][prev]:
            df['inUptrend'][current] = False
        else:
            df['inUptrend'][current] = df['inUptrend'][prev]
            
            if df['inUptrend'][current] and df['Lowerband'][current] < df['Lowerband'][prev]:
                df['Lowerband'][current] = df['Lowerband'][prev]
                
            if not df['inUptrend'][current] and df['Upperband'][current] > df['Upperband'][prev]:
                df['Upperband'][current] = df['Upperband'][prev]

vector version

def superTrend(df, peroid=5, multipler=1.5):
    df['averageTrueRange'] = averageTrueRange(df, peroid=peroid)
    h2 = ((df['high'] + df['low']) / 2)
    df['Upperband'] = h2 + (multipler * df['averageTrueRange'])
    df['Lowerband'] = h2 - (multipler * df['averageTrueRange'])
    df['inUptrend'] = None


    cond1 = df['close'].values[1:] > df['Upperband'].values[:-1]
    cond2 = df['close'].values[1:] < df['Lowerband'].values[:-1]

    df.loc[cond1, 'inUptrend'] = True
    df.loc[cond2, 'inUptrend'] = False

    df.loc[(~cond1) & (cond2), 'inUptrend'] = df['inUptrend'][:-1]
    df.loc[(~cond1) & (cond2) & (df['inUptrend'].values[1:] == True) & (df['Lowerband'].values[1:] < df['Lowerband'].values[:-1]), 'Lowerband'] = df['Lowerband'][:-1]
    df.loc[(~cond1) & (cond2) & (df['inUptrend'].values[1:] == False) & (df['Upperband'].values[1:] > df['Upperband'].values[:-1]), 'Upperband'] = df['Upperband'][:-1]
   

example of data

Upvotes: 8

Views: 655

Answers (2)

Rom
Rom

Reputation: 322

Here is the Numba / Numpy version of your code. You have to convert your df[ 'close' ], df[ 'high' ] and df[ 'low' ] as numpy arrays for speed benefit. I didn't check if the output values are correct but you got the idea.

import numpy as np
from numba import jit

# UNCOMMENT THIS LINE IF YOU DON'T HAVE THE OPEN PRICES
# c_open = np.concatenate((np.array([np.nan]), c_close[1:]))

@jit(nopython=True)
def true_range(c_open, c_high, c_low):
    return np.maximum(np.maximum(c_high - c_low, np.abs(c_high - c_open)), np.abs(c_low - c_open))


@jit(nopython=True)
def average_true_range(c_open, c_high, c_low, period=12):
    true_r = true_range(c_open, c_high, c_low)
    size = len(true_r)
    out = np.array([np.nan] * size)
    for i in range(period - 1, size):
        window = true_r[i - period + 1:i + 1]
        out[i] = np.mean(window)
    return out


@jit(nopython=True)
def super_trend(c_close, c_open, c_high, c_low, period=5, multipler=1.5):
    size = len(c_close)
    avg_true_r = average_true_range(c_open, c_high, c_low, period=period)
    h2 = (c_high + c_low) / 2
    upper_band = h2 + (multipler * avg_true_r)
    lower_band = h2 - (multipler * avg_true_r)
    in_up_trend = np.array([np.nan] * size)
    for current in range(1, size):
        prev = current - 1
        if c_close[current] > upper_band[prev]:
            in_up_trend[current] = True
        elif c_close[current] < lower_band[prev]:
            in_up_trend[current] = False
        else:
            in_up_trend[current] = in_up_trend[prev]
            if in_up_trend[current] and lower_band[current] < lower_band[prev]:
                lower_band[current] = lower_band[prev]
            if not in_up_trend[current] and upper_band[current] > upper_band[prev]:
                upper_band[current] = upper_band[prev]
    return upper_band, lower_band, in_up_trend

Edit : If you don't use Heiken Ashi, you don't need to shift the close prices to get the last close prices as they are equivalent to open prices ;)

Feel free to check my lib of fast indicators @ github

Upvotes: 3

Nathan Dai
Nathan Dai

Reputation: 502

Instead of import pandas as pd, try using Modin. Modin automatically makes pandas much faster. Just do import modin.pandas as pd. You don't need to change any code other than the import.

If you need to use the df.apply() method, there is a package called Swifter. After you pip install swifter, all you need to do is import swifter, and then instead of doing df.apply(), do df.swifter.apply(). What's convenient is that Swifter also works with Modin.

Upvotes: 8

Related Questions