Reputation:
I have a question regarding the code below. Note that my input data was day = 30/06
, Category = FDE
and DTT = Hol
, and I can get SPV
(First Code). However, when I do day = 30/06
, Category = ABC
and DTT = NA
, I can't get SPV
(Second Code). I would need to show the line corresponding to that date/category/dtt. How to adjust this?
Executable code below:
For 30/06, FDE, Hol
library(dplyr)
df1 <- structure(
list(date1= c("2021-06-28","2021-06-28","2021-06-28"),
date2 = c("2021-06-30","2021-06-30","2021-07-02"),
DTT= c(NA,"Hol","Hol"),
Week= c("Wednesday","Wednesday","Friday"),
Category = c("ABC","FDE","ABC"),
DR1 = c(4,1,1),
DR01 = c(4,1,2), DR02= c(4,2,0),DR03= c(9,5,0),
DR04 = c(5,4,3),DR05 = c(5,4,0)),
class = "data.frame", row.names = c(NA, -3L))
dmda<-"2021-06-30"
CategoryChosse<-"FDE"
DTest<-"Hol"
x<-df1 %>% select(starts_with("DR0"))
x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
PV<-select(x, date2,Week, Category, DTT, DR1, ends_with("PV"))
med<-PV %>%
group_by(Category,Week,DTT) %>%
summarize(across(ends_with("PV"), median))
SPV<-df1%>%
inner_join(med, by = c('Category', 'Week','DTT')) %>%
mutate(across(matches("^DR0\\d+$"), ~.x +
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV<-data.frame(SPV)
mat1 <- df1 %>%
filter(date2 == dmda, Category == CategoryChosse, DTT==DTest) %>%
select(starts_with("DR0")) %>%
pivot_longer(cols = everything()) %>%
arrange(desc(row_number())) %>%
mutate(cs = cumsum(value)) %>%
filter(cs == 0) %>%
pull(name)
(dropnames <- paste0(mat1,"_",mat1, "_PV"))
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse, DTT==DTest) %>%
select(-any_of(dropnames))
if(length(grep("DR0", names(SPV))) == 0) {
SPV[mat1] <- NA_real_
}
> SPV
date1 date2 DTT Week Category DR01_DR01_PV DR02_DR02_PV DR03_DR03_PV DR04_DR04_PV DR05_DR05_PV
1 2021-06-28 2021-06-30 Hol Wednesday FDE 1 1 1 1
For 30/06, ABC, NA
dmda<-"2021-06-30"
CategoryChosse<-"ABC"
DTest<-NA
x<-df1 %>% select(starts_with("DR0"))
x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
PV<-select(x, date2,Week, Category, DTT, DR1, ends_with("PV"))
med<-PV %>%
group_by(Category,Week,DTT) %>%
summarize(across(ends_with("PV"), median))
SPV<-df1%>%
inner_join(med, by = c('Category', 'Week','DTT')) %>%
mutate(across(matches("^DR0\\d+$"), ~.x +
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV<-data.frame(SPV)
mat1 <- df1 %>%
filter(date2 == dmda, Category == CategoryChosse, DTT==DTest) %>%
select(starts_with("DR0")) %>%
pivot_longer(cols = everything()) %>%
arrange(desc(row_number())) %>%
mutate(cs = cumsum(value)) %>%
filter(cs == 0) %>%
pull(name)
(dropnames <- paste0(mat1,"_",mat1, "_PV"))
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse, DTT==DTest) %>%
select(-any_of(dropnames))
if(length(grep("DR0", names(SPV))) == 0) {
SPV[mat1] <- NA_real_
}
> SPV
[1] date1 date2 DTT Week Category DR01_DR01_PV DR02_DR02_PV DR03_DR03_PV
[9] DR04_DR04_PV DR05_DR05_PV
<0 lines>
Upvotes: 1
Views: 41
Reputation: 28705
You can write your own function which is like ==
unless one element is NA
, and in that case only returns TRUE
when both are NA
. Then use that function in filter
instead of ==
.
In the future please attempt to create a minimal reproducible example like the one below, so that you are asking a specific question rather than asking people to fix your code for you.
See How to make a great R reproducible example
library(dplyr, warn.conflicts = FALSE)
same <- function(x, y){
case_when(
is.na(x) != is.na(y) ~ FALSE,
is.na(x) ~ TRUE,
TRUE ~ x == y)
}
df <- data.frame(x = c('hol', NA))
x_want <- 'hol'
df %>%
filter(same(x, x_want))
#> x
#> 1 hol
x_want <- NA
df %>%
filter(same(x, x_want))
#> x
#> 1 <NA>
Created on 2021-12-20 by the reprex package (v2.0.1)
Upvotes: 1