ygoe
ygoe

Reputation: 20364

Watch dog for blocking function call

I have a closed-source API for some hardware sensor that I use to query that sensor. The API comes as DLL that I use through C# interop. The API's functions are blocking. They usually return error values but in some cases they just won't return.

I need to be able to detect this situation and in that case kill the blocked thread. How can this be done in C#?

The thread they're being invoked on is created through a BackgroundWorker. I'm looking for a simple watch dog for blocking function calls that I can set up before calling the function and reset when I'm back. It should just sit there and wait for me to come back. If I don't, it shall kill the thread so that 1) the API is freed up again and no thread of my application is still hanging around and doing anything should it eventually return and 2) I can take other recovery measures like re-initialising the API to continue working with it.

Upvotes: 2

Views: 1370

Answers (1)

Timothy Fries
Timothy Fries

Reputation: 2233

One approach might be to set up a System.Threading.Timer before the API call to fire after a certain timeout interval, then dispose the Timer after the call completes. If the Timer fires, it'll fire on a ThreadPool thread, and you can then take appropriate action to kill the offending thread.

Note that you'll need to P/Invoke to the Win32 TerminateThread API, since .NET's Thread.Abort() won't work if you're blocked in unmanaged code.

Also note that it's very unlikely your process will be in a safe state after forcibly killing a thread, as the terminated thread might be holding synchronization objects, might have been in the middle of mutating shared memory state, or any other such critical operation. As a result of terminating it, other threads may hang, the process may crash, data may be corrupted, dogs and cats might start living together; there's no way of being sure what'll happen, but chances are it'll be bad. The safest approach, if possible, would be to isolate usage of the API into a separate process that you communicate with via some remoting channel. Then you can kill that external process on demand, as killing a process is a lot safer than killing a thread.

Upvotes: 6

Related Questions