Reputation: 139
Let's say I have this dataframe (the "number" variable is also from character-type in the original dataframe):
df <- data.frame(
id = c(1,2,2,1,2),
number = c(30.6, "50.2/15.5", "45/58.4", 80, "57/6"))
df$number <- as.character(df$number)
Now I want to add another column with the cumulative sum for each ID and I did this with df %>% mutate(csum = ave(number, id, FUN=cumsum))
, which works for the single numbers, but of course not for the numbers separated with "/". How can I solve this problem?
The final dataframe should be like this:
df2 <- data.frame(
id = c(1,2,2,1,2),
number = c(30.6, "50.2/15.5", "45/58.4", 80, "57/6"),
csum = c(30.6, "50.2/15.5", "95.2/73.9", 110.6, "152.2/79.9"))
df2
Upvotes: 5
Views: 356
Reputation: 887881
We could use base R
- read the 'number' column with read.table
to split it to two columns, create a logical vector where there are no NAs
, subset the 'd1' rows, loop over the columns, get the cumulative sum (cumsum
) and paste
, then assign it to a new column 'csum' in the original dataset
d1 <- read.table(text = df$number, sep = "/", fill = TRUE, header = FALSE)
i1 <- !rowSums(is.na(d1)) > 0
df$csum[i1] <- do.call(paste, c(lapply(d1[i1,], cumsum), sep = "/"))
-output
> df
id number csum
1 1 30.6 <NA>
2 2 50.2/15.5 50.2/15.5
3 2 45/58.4 95.2/73.9
4 1 80 <NA>
5 2 57/6 152.2/79.9
Upvotes: 2
Reputation: 73692
You could use the extremely fast matrixStats::colCumsums
.
res <- do.call(rbind, by(df, df$id, \(x) {
cs <- matrixStats::colCumsums(do.call(rbind, strsplit(x$number, '/')) |>
type.convert(as.is=TRUE))
r <- do.call(paste, c(as.list(as.data.frame(cs)), sep='/'))
data.frame(id=x$id, number=x$number, csum=r)
}))
Note: R version 4.1.2 (2021-11-01)
.
Gives:
res
# id number csum
# 1.1 1 30.6 30.6
# 1.2 1 80 110.6
# 2.1 2 50.2/15.5 50.2/15.5
# 2.2 2 45/58.4 95.2/73.9
# 2.3 2 57/6 152.2/79.9
Upvotes: 2
Reputation: 79244
One way could be:
group_by
separate
in column a
and b
mutate
across a
and b
and apply cumsum
unite
from tidyr
package using na.rm=TRUE
argumentlibrary(dplyr)
library(tidyr)
df %>%
group_by(id) %>%
separate(number, c("a", "b"), sep="/", remove = FALSE, convert = TRUE) %>%
mutate(across(c(a,b), ~cumsum(.))) %>%
unite(csum, c(a,b), sep = '/', na.rm = TRUE)
id number csum
<dbl> <chr> <chr>
1 1 30.6 30.6
2 2 50.2/15.5 50.2/15.5
3 2 45/58.4 95.2/73.9
4 1 80 110.6
5 2 57/6 152.2/79.9
Upvotes: 2