figs_and_nuts
figs_and_nuts

Reputation: 5763

In pyspark how to create an array column that is a summation of two or more array columns?

I have a few array type columns and DenseVector type columns in my pyspark dataframe. I want to create new columns that are element-wise additions of these columns. Below is the code that summarises the problem:

Setup:

from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.ml.functions import vector_to_array
from pyspark.ml.linalg import VectorUDT, DenseVector
from pyspark.sql.functions import udf, array, lit

spark = SparkSession.builder.getOrCreate()

data = [(1,4),(2,5),(3,6)]

a = spark.createDataFrame(data)

f = udf(lambda x: DenseVector(x), returnType=VectorUDT())

import pyspark.sql.functions as F

@F.udf(returnType=VectorUDT())
def add_cons_dense_col(val):
    return DenseVector(val)

a=a.withColumn('d1', add_cons_dense_col(F.array([F.lit(1.), F.lit(1.)])))
a=a.withColumn('d2', add_cons_dense_col(F.array([F.lit(1.), F.lit(1.)])))
a=a.withColumn('l1', F.array([F.lit(1.), F.lit(1.)]))
a=a.withColumn('l2', F.array([F.lit(1.), F.lit(1.)]))

a.show()
output:
+---+---+---------+---------+----------+----------+
| _1| _2|       d1|       d2|        l1|        l2|
+---+---+---------+---------+----------+----------+
|  1|  4|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]|
|  2|  5|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]|
|  3|  6|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]|
+---+---+---------+---------+----------+----------+

I can perform the following operations to the same effect on _1, _2

a.withColumn('l_sum', a._1+a._2)
a.withColumn('l_sum', a['_1']+a['_2'])
a.withColumn('l_sum', col('_1') + col('_2'))

I want to be able to perform additions on d1, d2 and l1,l2. But all three approaches fail. I am looking to add the arrays or DenseVectors elementwise:

for example:

a.withColumn('l_sum', a.d1+a.d2).show()
a.withColumn('l_sum', a['d1']+a['d2']).show()
a.withColumn('l_sum', col('d1') + col('d2')).show()

But I get:

output:
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/dataframe.py in withColumn(self, colName, col)
   2476         if not isinstance(col, Column):
   2477             raise TypeError("col should be Column")
-> 2478         return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx)
   2479 
   2480     def withColumnRenamed(self, existing, new):

~/miniconda3/envs/pyspark/lib/python3.9/site-packages/py4j/java_gateway.py in __call__(self, *args)
   1307 
   1308         answer = self.gateway_client.send_command(command)
-> 1309         return_value = get_return_value(
   1310             answer, self.gateway_client, self.target_id, self.name)
   1311 

~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
    115                 # Hide where the exception came from that shows a non-Pythonic
    116                 # JVM exception message.
--> 117                 raise converted from None
    118             else:
    119                 raise

AnalysisException: cannot resolve '(d1 + d2)' due to data type mismatch: '(d1 + d2)' requires (numeric or interval or interval day to second or interval year to month) type, not struct<type:tinyint,size:int,indices:array<int>,values:array<double>>;
'Project [_1#0L, _2#1L, d1#5, d2#10, l1#15, l2#21, (d1#5 + d2#10) AS l_sum#365]
+- Project [_1#0L, _2#1L, d1#5, d2#10, l1#15, array(1.0, 1.0) AS l2#21]
   +- Project [_1#0L, _2#1L, d1#5, d2#10, array(1.0, 1.0) AS l1#15]
      +- Project [_1#0L, _2#1L, d1#5, add_cons_dense_col(array(1.0, 1.0)) AS d2#10]
         +- Project [_1#0L, _2#1L, add_cons_dense_col(array(1.0, 1.0)) AS d1#5]
            +- LogicalRDD [_1#0L, _2#1L], false

Can you help me create a column that is elementwise addition of array type columns or DenseVector type columns

Upvotes: 2

Views: 1517

Answers (2)

ARCrow
ARCrow

Reputation: 1857

For elementwise sum you can use this :

a = (a
     .withColumn('elementWiseSum', F.expr('transform(l1, (element, index) -> element + element_at(l2, index + 1))'))
    )
a.show()

Upvotes: 0

Nithish
Nithish

Reputation: 3232

Spark 2.4

Spark does not all allow for native operations to be applied on Vector using expressions. Hence, a UDF is needed. For element-wise summation of arrays, we can zip the arrays together using arrays_zip and apply Higher Order Function - Transform to sum the zipped array.

@F.udf(returnType=VectorUDT())
def sum_vector(v1: VectorUDT, v2: VectorUDT) -> VectorUDT:
    return v1 + v2

(a.withColumn("vector_sum", sum_vector(F.col("d1"), F.col("d2")))
  .withColumn("array_sum", F.expr("transform(arrays_zip(l1, l2), x -> x.l1 + x.l2)"))
).show()

"""
+---+---+---------+---------+----------+----------+----------+----------+
| _1| _2|       d1|       d2|        l1|        l2|vector_sum| array_sum|
+---+---+---------+---------+----------+----------+----------+----------+
|  1|  4|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  2|  5|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  3|  6|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
+---+---+---------+---------+----------+----------+----------+----------+
"""

Spark 3.1+

In Spark 3.0, vector_to_array and array_to_vector functions have been introduced and using these the vector summation can be done without UDF by converting vector to array. Further in Spark 3.1 zip_with can be used to apply element wise operation on 2 arrays.

from pyspark.sql import Column
from pyspark.ml.functions import vector_to_array, array_to_vector

def array_sum_expression_builder(c1: Column, c2: Column) -> Column:
    return F.zip_with(c1, c2, lambda x, y: x + y)

result = (a.withColumn("vector_sum",  array_to_vector(
                                array_sum_expression_builder(
                                    vector_to_array(F.col("d1")), 
                                    vector_to_array(F.col("d2")))))
  .withColumn("array_sum",  array_sum_expression_builder(F.col("l1"), F.col("l2")))
)

result.show()

"""
+---+---+---------+---------+----------+----------+----------+----------+
| _1| _2|       d1|       d2|        l1|        l2|vector_sum| array_sum|
+---+---+---------+---------+----------+----------+----------+----------+
|  1|  4|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  2|  5|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  3|  6|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
+---+---+---------+---------+----------+----------+----------+----------+
"""

result.printSchema()

"""
root
 |-- _1: long (nullable = true)
 |-- _2: long (nullable = true)
 |-- d1: vector (nullable = true)
 |-- d2: vector (nullable = true)
 |-- l1: array (nullable = false)
 |    |-- element: double (containsNull = false)
 |-- l2: array (nullable = false)
 |    |-- element: double (containsNull = false)
 |-- vector_sum: vector (nullable = true)
 |-- array_sum: array (nullable = false)
 |    |-- element: double (containsNull = true)
"""

Upvotes: 4

Related Questions