Reputation: 131
I have a pandas dataframe with date values, however, I need to convert it from dates to text General format like in Excel, not to date string, in order to match with primary keys values in SQL, which are, unfortunately, reordered in general format. Is it possible to do it Python or the only way to convert this column to general format in Excel?
Here is how the dataframe's column looks like:
ID Desired Output
1/1/2022 44562
7/21/2024 45494
1/1/1931 11324
Upvotes: 3
Views: 2160
Reputation: 510
Yes, it's possible. The general format in Excel starts counting the days from the date 1900-1-1.
You can calculate a time delta between the dates in ID and 1900-1-1.
Inspired by this post you could do...
data = pd.DataFrame({'ID': ['1/1/2022','7/21/2024','1/1/1931']})
data['General format'] = (
pd.to_datetime(data["ID"]) - pd.Timestamp("1900-01-01")
).dt.days + 2
print(data)
ID General format
0 1/1/2022 44562
1 7/21/2024 45494
2 1/1/1931 11324
The +2
is because:
Upvotes: 4
Reputation: 174
Excel stores dates as sequential serial numbers so that they can be used in calculations. By default, January 1, 1900 is serial number 1, and January 1, 2008 is serial number 39448 because it is 39,447 days after January 1, 1900.
-Microsoft's documentation
So you can just calculate (difference between your date and January 1, 1900) + 1
see How to calculate number of days between two given dates
Upvotes: 0