Reputation: 129
I ran into a problem for understanding the logic behind "the last warp loop unrolling" technique in Nvidia's parallel reduction tutorial available here.
In case of thread31
(for which tid=31
), before unrolling the loop:
this thread only executes these operations:
sdata[31] += sdata[31+64]
sdata[31] += sdata[31+32]
But after the loop unrolling (as shown below):
The condition if(tid < 32)
becomes true for thread31
and the warpReduce
function will be executed for it and therefore all these operations which wouldn't be executed in the unrolled loop version will be executed now:
sdata[31] += sdata[31+32] //for second time
sdata[31] += sdata[31+16]
...
sdata[31] += sdata[31+1]
What's the logic behind it?
Upvotes: 0
Views: 303
Reputation: 151972
First:
sdata[31] += sdata[31+32] //for second time
No, that's not the case, it doesn't get executed a second time. The loop terminates when the s
variable is shifted right from 64 to 32, and the body of the loop is not executed for s=32
. Therefore the above statement is not executed during the body of the loop, because that would imply s=32
, which is excluded by the loop termination condition.
Now, on to your question. It's true there is a behavioral difference between the two cases, however the only result that matters at the end is sdata[0]
and this behavioral difference does not affect the results calculation for sdata[0]
. So the only thing left would be "does it matter for performance?"
I don't have an answer for you, but I doubt it would make a significant difference. In the non-warp-reduce case, at each loop iteration there is a shift-right operation on a register variable, followed by a test, followed by a predicated set of shared memory instructions. In the warp-reduce case, there is some extra shared memory load/store activity and add arithmetic, but no shift arithmetic or testing per reduction step.
With respect to the extra load/store activity, the only portion of this that matters is the portion that will reach "above" the warp range (i.e. 0-31). There is extra shared loading activity going on here. The extra store activity and extra add arithmetic is irrelevant, because constraining these operations to less than a single warp is not any better performance-wise (this point is covered in the presentation itself, "We don’t need if (tid < s)
because it doesn’t save any
work"). So the only consideration here is the once-per-step "extra" read of shared memory, one additional transaction, basically, per step. Against that we have the shifting, conditional test, and predication.
I don't know which is faster, but my guess as to the "logic" would be:
The difference would be small. Shared memory pressure is unlikely to be an issue at this point in this code.
The person who wrote it either didn't consider this at all, or considered it and decided it was probably so trivial as to be not worthy of cluttering a presentation that is really focused on other things, and will be read by many people.
EDIT: Based on comments, there appears to still be some question about my claim that the behavioral difference does not affect the results calculdation for sdata[0]
.
First, let's acknowledge that the only item we care about at the end is sdata[0]
. sdata[1]
or any other "result" is irrelevant for this discussion.
Let's make an observation about which thread calculations matter, at each step. We can observe that at a given step in the final-warp reduction, the only threads that matter (i.e. that can have an effect on the final value in sdata[0]
) are those that are less then the offset value:
sdata[tid] += sdata[tid + offset]; // where offset is 32, then 16, then 8, etc.
Why is this? In order to understand that, we need to understand 2 things. First, we must understand at this point that there is an expectation of warp-synchronous behavior. This is already identified in the presentation (slide 21) as a necessary precondition to convert the loop reduction to the unrolled final warp reduction. I'm not going to spend a lot of time on the definition of warp-synchronous, but it essentially means we are depending on the warp to execute in lockstep. A warp is 32 threads, and it means that when one thread is executing a particular instruction, every thread in the warp is executing that instruction, at that point in the instruction stream. Second, we need to carefully decompose the above line to understand the sequence of operations. The above line of C++ code will decompose into the following pseudo-machine-language code that the GPU is actually executing:
LD R0, sdata[tid]
LD R1, sdata[tid+offset]
ADD R3, R2, R1
ST sdata[tid], R3
In english, at each step in the final warp unrolled reduction, each thread will load its sdata[tid]
value, then each thread will load its sdata[tid+offset]
value, then each thread will add those 2 values together, then each thread will store the result. Because the warp is executing in lockstep at this point, when each thread loads its sdata[tid]
value, it means that every thread is loading its respective value, at that instruction cycle/clock cycle, i.e. at that instant.
now, lets revisit the overall operation. At the point in the sequence where we have:
sdata[tid] += sdata[tid + 16];
how can we justify the statement that the only threads here that matter are those whose tid
value is less than the offset? The first thing each thread does is load sdata[tid]
. Then each thread loads sdata[tid+16]
. So at this point, threads 0-15 have loaded their own value, plus the values from locations 16-31. Threads 16-31 have loaded their own value, plus the values from locations 32-47. Then all 32 threads perform the addition, then all 32 threads perform the store operation. So thread 16, which also picked up the value from location 32, did not update the location 16 value until after the previous value at location 16 had been consumed (by thread 0 in this case). So the behavior of threads 16-31 at this point have no impact on the value computed for thread 0.
We can repeat the above process to show that for each offset, the threads whose indexes lie at or above the offset have no impact on the calculation for thread 0.
Upvotes: 1