Reputation: 45
Hi everyone happy new year! Starting the year right with Rstudio.
I want to use dplyr
to sort and filter out rows that meet the following conditions:
For example, Panaeus shrimp was traded between AUS and BGD for the year 2018 will show up as both.
AUS, BGD, penaeus, 2018, penaeus shrimps nei &
BGD, AUS, penaeus, 2018, penaeus shrimps nei
I've tried using group_by
and filter(any)
but it doesn't seem to work.
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}
</style>
<table class="tg">
<thead>
<tr>
<th class="tg-0pky">importer</th>
<th class="tg-0pky">exporter</th>
<th class="tg-0pky">species</th>
<th class="tg-0pky">year</th>
<th class="tg-0pky">common_name</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">ARG</td>
<td class="tg-0pky">oncorhynchus mykiss</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">rainbow trout</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">ARG</td>
<td class="tg-0pky">pleoticus muelleri</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">argentine red shrimp</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BEL</td>
<td class="tg-0pky">crangon crangon</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">common shrimp</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BGD</td>
<td class="tg-0pky">fenneropenaeus indicus</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">indian white prawn</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BGD</td>
<td class="tg-0pky">metapenaeus monoceros</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">speckled shrimp</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BGD</td>
<td class="tg-0pky">penaeus</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">penaeus shrimps nei</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BGD</td>
<td class="tg-0pky">penaeus monodon</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">giant tiger prawn</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BRN</td>
<td class="tg-0pky">litopenaeus stylirostris</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">blue shrimp</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">BRN</td>
<td class="tg-0pky">penaeus</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">penaeus shrimps nei</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">coregonus artedi</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">lake cisco</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">coregonus clupeaformis</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">lake(=common) whitefish</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">crangonidae</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">natantian decapods nei</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">oncorhynchus</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">pacific salmons nei</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">oncorhynchus mykiss</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">rainbow trout</td>
</tr>
<tr>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">pandalus</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">pandalus shrimps nei</td>
</tr>
<tr>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">salmo salar</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">atlantic salmon</td>
</tr>
<tr>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">salmonidae</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">salmonids</td>
</tr>
<tr>
<td class="tg-0pky">CAN</td>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">salvelinus namaycush</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">lake trout(=char)</td>
</tr>
<tr>
<td class="tg-0pky">BGD</td>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">salmo salar</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">atlantic salmon</td>
</tr>
<tr>
<td class="tg-0pky">BGD</td>
<td class="tg-0pky">AUS</td>
<td class="tg-0pky">penaeus</td>
<td class="tg-0pky">2018</td>
<td class="tg-0pky">penaeus shrimps nei</td>
</tr>
Upvotes: 1
Views: 51
Reputation: 11
Does this do the job?
data$cn = data$common_name
semi_join(data,data, by = c("importer" = "exporter", "exporter" = "importer", "common_name" = "cn", "cn" = "common_name"))
Upvotes: 1