Reputation: 4842
I have a df
:
1 2 3 4 5 6 7 8 9 10
A 10 0 0 15 0 21 45 0 0 7
I am trying fill index A
values with the current value if the next value is 0
so that the df
would look like this:
1 2 3 4 5 6 7 8 9 10
A 10 10 10 15 15 21 45 45 45 7
I tried:
df.loc[['A']].replace(to_replace=0, method='ffill').values
But this does not work, where is my mistake?
Upvotes: 2
Views: 56
Reputation: 765
df.applymap(lambda x:pd.NA if x==0 else x).fillna(method='ffill',axis=1)
1 2 3 4 5 6 7 8 9 10
A 10 10 10 15 15 21 45 45 45 7
Upvotes: 0
Reputation: 803
Well you should change your code a little bit and work with series
:
import pandas as pd
df = pd.DataFrame({'1': [10], '2': [0], '3': [0], '4': [15], '5': [0],
'6': [21], '7': [45], '8': [0], '9': [0], '10': [7]},
index=['A'])
print(df.apply(lambda x: pd.Series(x.values).replace(to_replace=0, method='ffill').values, axis=1))
Output:
A [10, 10, 10, 15, 15, 21, 45, 45, 45, 7]
dtype: object
This way, if you have multiple indices, the code still works:
import pandas as pd
df = pd.DataFrame({'1': [10, 11], '2': [0, 12], '3': [0, 0], '4': [15, 0], '5': [0, 3],
'6': [21, 3], '7': [45, 0], '8': [0, 4], '9': [0, 5], '10': [7, 0]},
index=['A', 'B'])
print(df.apply(lambda x: pd.Series(x.values).replace(to_replace=0, method='ffill').values, axis=1))
Output:
A [10, 10, 10, 15, 15, 21, 45, 45, 45, 7]
B [11, 12, 12, 12, 3, 3, 3, 4, 5, 5]
dtype: object
Upvotes: 1
Reputation: 260455
If you want to use your method, you need to work with Series on both sides:
df.loc['A'] = df.loc['A'].replace(to_replace=0, method='ffill')
Alternatively, you can mask
the 0 with NaNs, and ffill
the data on axis=1
:
df.mask(df.eq(0)).ffill(axis=1)
output:
1 2 3 4 5 6 7 8 9 10
A 10.0 10.0 10.0 15.0 15.0 21.0 45.0 45.0 45.0 7.0
Upvotes: 3