Reputation: 233
I'm again struggling with the usage of tensorflow datasets. I'm again loading my images via
data = keras.preprocessing.image_dataset_from_directory(
'./data',
labels='inferred',
label_mode='binary',
validation_split=0.2,
subset="training",
image_size=(img_height, img_width),
batch_size=sz_batch,
crop_to_aspect_ratio=True
)
I want to use this dataset in the pre-trained MobileNetV2
model = keras.applications.mobilenet_v2.MobileNetV2(input_shape=(img_height, img_width, 3), weights='imagenet')
The documentation says, that the input data must be scaled to be between -1 and 1. To do so, the preprocess_input
function is provided. When I use this function on my dataset
scaled_data = tf.keras.applications.mobilenet_v2.preprocess_input(data)
I get the error: TypeError: unsupported operand type(s) for /=: 'BatchDataset' and 'float'
So how can I use this function properly with the tensorflow dataset?
Upvotes: 2
Views: 3717
Reputation: 26698
Maybe try using tf.data.Dataset.map
:
import tensorflow as tf
import pathlib
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)
data_dir = pathlib.Path(data_dir)
batch_size = 32
train_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(180, 180),
batch_size=batch_size)
def preprocess(images, labels):
return tf.keras.applications.mobilenet_v2.preprocess_input(images), labels
train_ds = train_ds.map(preprocess)
images, _ = next(iter(train_ds.take(1)))
image = images[0]
plt.imshow(image.numpy())
Before preprocessing the images:
After preprocessing the images with tf.keras.applications.mobilenet_v2.preprocess_input
only:
After preprocessing the images with tf.keras.layers.Rescaling(1./255)
only:
Upvotes: 3