Reputation: 63
I am trying to anonymize/hash a nested column, but haven't been successful. The schema looks something like this:
-- abc: struct (nullable = true)
| |-- xyz: struct (nullable = true)
| | |-- abc123: string (nullable = true)
| | |-- services: struct (nullable = true)
| | | |-- service: array (nullable = true)
| | | | |-- element: struct (containsNull = true)
| | | | | |-- type: string (nullable = true)
| | | | | |-- subtype: string (nullable = true)
I need to change (anonymize/hash) value of type
column.
Upvotes: 6
Views: 4363
Reputation: 29307
With the hash
function from the pyspark-nested-functions library you can hash any nested field (e.g. "abc.xyz.services.type"
) with hash_field(df, "abc.xyz.services.type")
:
from pyspark.sql import Row
df = spark.createDataFrame([
Row(abc=Row(xyz=Row(abc123="value123", services=[Row(type="type1", subtype="subtype1")])))
])
df.show(truncate=False)
# +---------------------------------+
# |abc |
# +---------------------------------+
# |{{value123, [{type1, subtype1}]}}|
# +---------------------------------+
from nestedfunctions.functions.hash import hash_field
hashed_df = hash_field(df, "abc.xyz.services.type", num_bits=256)
hashed_df.show(truncate=False)
# +--------------------------------------------------------------------------------------------+
# |abc |
# +--------------------------------------------------------------------------------------------+
# |{{value123, [{ba5857c2e8a7c12df14097eaa5ffb1c97976b9d433fe63a65df84849c5eea0ec, subtype1}]}}|
# +--------------------------------------------------------------------------------------------+
Upvotes: 0
Reputation: 32650
For Spark 3.1+, there is a column method withField
that can be used to update struct fields.
Assuming this is your input dataframe (corresponding to the schema you provided):
from pyspark.sql import Row
df = spark.createDataFrame([
Row(abc=Row(xyz=Row(abc123="value123", services=[Row(type="type1", subtype="subtype1")])))
])
df.show(truncate=False)
#+---------------------------------+
#|abc |
#+---------------------------------+
#|{{value123, [{type1, subtype1}]}}|
#+---------------------------------+
You can achieve that using transform
on the array services
to hash the field type
for each struct element (here I used xxhash64
function to illustrate) like this:
import pyspark.sql.functions as F
df2 = df.withColumn(
"abc",
F.col("abc").withField(
"xyz",
F.col("abc.xyz").withField(
"services",
F.expr("transform(abc.xyz.services, x -> struct(xxhash64(x.type) as type, x.subtype))")
)
)
)
df2.show(truncate=False)
#+-----------------------------------------------+
#|abc |
#+-----------------------------------------------+
#|{{value123, [{2134479862461603894, subtype1}]}}|
#+-----------------------------------------------+
For older Spark versions, you'll need to recreate the whole structs in order to update the fields, which makes it tedious when there are many nested fields. In your case it would be like this:
df2 = df.withColumn(
"abc",
F.struct(
F.struct(
F.col("abc.xyz.abc123"),
F.expr(
"transform(abc.xyz.services, x -> struct(xxhash64(x.type) as type, x.subtype))"
).alias("services")
).alias("xyz")
)
)
Upvotes: 6