Reputation: 617
I have a data frame where I have land use data for the year 2005 and 2018. I would like to generate a new data.frame that shows me the difference between 2005 and 2018 for each column, so that if there was a reduction, the minus sign(-). For example, if in 2005 the variable Veg
had 1000 ha and in 2018 it had 8000 ha, the data.frame should indicate -200.
data.frame example:
df
df<-structure(list(place = c("F01", "F01", "F02", "F02", "F03", "F03", "F04", "F04", "F05", "F05", "F06", "F06"), year = c(2005, 2018, 2005, 2018, 2005, 2018, 2005, 2018, 2005, 2018, 2005, 2018), Veg = c(12281.5824712026, 12292.2267477317, 7254.98919713131, 7488.9138055415, 864.182200710528, 941.602680778032, 549.510775817472, 584.104674537216, 5577.10195081334, 5688.28474549675, 1244.96456185886, 1306.41862713264), Agri = c(113.178596532624, 1376.68748390712, 85.2373706436, 1048.71071335262, 0, 46.236076173504, 0, 46.236076173504, 85.2373706436, 1002.47463717912, 1.413692976528, 228.851945376768 ), Past = c(9190.16856517738, 7855.55923692456, 5029.33750161394, 3776.9718412309, 983.015569149264, 800.981808818688, 710.255983089744, 572.213021852304, 3726.66100294858, 2700.40306039963, 879.982298683488, 597.410020198656), Urb = c(146.026168634304, 200.910719487744, 146.026168634304, 200.910719487744, 141.119822421648, 194.840155529712, 141.119822421648, 194.840155529712, 4.906346212656, 6.070563958032, NA, NA), SoloExp = c(61.12143163224, 67.940421283728, 61.12143163224, 62.451966198384, 50.144521461552, 54.801392443056, 49.146620536944, 52.639273773072, 9.895850835696, 7.650573755328, 6.320039189184, 1.164217745376), Hidro = c(9.230583552624, 7.983207396864, 9.230583552624, 7.983207396864, NA, NA, NA, NA, 7.401098524176, 6.320039189184, 5.654771906112, 4.490554160736), total = c(691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971, 691953.981181971)), row.names = c(NA, -12L), class = "data.frame")
I would like to get an output like this
Upvotes: 1
Views: 106
Reputation: 160447
Here's a dplyr pipe that is robust to the order of rows (e.g., if 2005
ever occurs after 2018
for whatever reason).
library(dplyr)
library(tidyr) # pivot_*
df %>%
pivot_longer(-c("place", "year")) %>%
pivot_wider(c("place", "name"), names_from = "year", values_from = "value") %>%
mutate(results = coalesce(`2005` - `2018`, 0)) %>%
transmute(place, name, results = dplyr::coalesce(results, 0)) %>%
pivot_wider(place, names_from = "name", values_from = "results")
# # A tibble: 6 x 8
# place Veg Agri Past Urb SoloExp Hidro total
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 F01 -10.6 -1264. 1335. -54.9 -6.82 1.25 0
# 2 F02 -234. -963. 1252. -54.9 -1.33 1.25 0
# 3 F03 -77.4 -46.2 182. -53.7 -4.66 0 0
# 4 F04 -34.6 -46.2 138. -53.7 -3.49 0 0
# 5 F05 -111. -917. 1026. -1.16 2.25 1.08 0
# 6 F06 -61.5 -227. 283. 0 5.16 1.16 0
Upvotes: 1
Reputation: 78927
We could do this by using across
function:
library(dplyr)
df %>%
mutate(across(-c(place, year), ~ lag(., default = .[1]) - .)) %>%
filter(year==2018) %>%
select(-year)
place Veg Agri Past Urb SoloExp Hidro total
1 F01 -10.64428 -1263.50889 1334.6093 -54.884551 -6.818990 1.247376 0
2 F02 -233.92461 -963.47334 1252.3657 -54.884551 -1.330535 1.247376 0
3 F03 -77.42048 -46.23608 182.0338 -53.720333 -4.656871 NA 0
4 F04 -34.59390 -46.23608 138.0430 -53.720333 -3.492653 NA 0
5 F05 -111.18279 -917.23727 1026.2579 -1.164218 2.245277 1.081059 0
6 F06 -61.45407 -227.43825 282.5723 NA 5.155821 1.164218 0
Upvotes: 1