Reputation: 127
I am trying to calculate a rolling mean of a specific column based on a condition in another column. The condition is to create three different rolling means for column A, as follows -
Consider the following df with a window size of 2
A B
0 1 2
1 2 4
2 3 4
3 4 6
4 5 1
5 6 2
The output will be the following-
rolling less rolling equal rolling greater
0 NaN NaN NaN
1 NaN 1 2
2 NaN NaN 2.5
3 NaN NaN 3.5
4 5 NaN 4
5 5 6 NaN
The main difficulty I encountered was that the rolling
function is column-wise, and on the other hand, the apply
function works rows-wise, but then, calculating the rolling mean is too hard-coded.
Any ideas? Thanks a lot.
Upvotes: 0
Views: 39
Reputation: 765
def function1(ss:pd.Series):
df11=df1.loc[:ss.name].tail(2)
return pd.Series([
df11.loc[lambda dd:dd.B<2,'A'].mean()
,df11.loc[lambda dd:dd.B==2,'A'].mean()
,df11.loc[lambda dd:dd.B>2,'A'].mean()
],index=['rolling less','rolling equal','rolling greater'],name=ss.name)
pd.concat([df1.A.shift(i) for i in range(2)],axis=1)\
.apply(function1,axis=1)
A B rolling less rolling equal rolling greater
0 1 2 NaN 1.0 NaN
1 2 4 NaN 1.0 2.0
2 3 4 NaN NaN 2.5
3 4 6 NaN NaN 3.5
4 5 1 5.0 NaN 4.0
5 6 2 5.0 6.0 NaN
Upvotes: 0
Reputation: 120499
You can create your 3 columns before rolling
then compute it:
out = df.join(df.assign(rolling_less=df.mask(df['B'] >= 2)['A'],
rolling_equal=df.mask(df['B'] != 2)['A'],
rolling_greater=df.mask(df['B'] <= 2)['A'])
.filter(like='rolling').rolling(2, min_periods=1).mean())
print(out)
# Output
A B rolling_less rolling_equal rolling_greater
0 1 2 NaN 1.0 NaN
1 2 4 NaN 1.0 2.0
2 3 4 NaN NaN 2.5
3 4 6 NaN NaN 3.5
4 5 1 5.0 NaN 4.0
5 6 2 5.0 6.0 NaN
Upvotes: 1