Reputation: 31
I am quite new to Pyspark (and Spark) and have a concrete task to solve that is currently beyond my knowledge :).
I have a bunch of files of the following structure:
'File_A.dtx':
## Animal
# Header Start
Name, Type, isMammal
# Body Start
Hasi, Rabbit, yes
Birdi, Bird, no
Cathi, Cat, yes
## House
# Header Start
Street, Number
# Body Start
Main Street, 32
Buchengasse, 11
'File_B.dtx':
## Animal
# Header Start
Name, Type, isMammal
# Body Start
Diddi, Dog, yes
Eli, Elephant, yes
## House
# Header Start
Street, Number
# Body Start
Strauchweg, 13
Igelallee, 22
My anticipated result are two dataframes as follows:
Animals:
| Filename | Name | Type | isMammal |
| ---------- | ------- | -------- | ----------- |
| File_A.dtx | Hasi | Rabbit | yes |
| File_A.dtx | Birdi | Bird | no |
| File_A.dtx | Cathi | Cat | yes |
| File_B.dtx | Diddi | Dog | yes |
| File_B.dtx | Eli | Elephant | yes |
House:
| Filename | Street | Number |
| ---------- | ------------ | -------- |
| File_A.dtx | Main Street | 32 |
| File_A.dtx | Buchengasse | 11 |
| File_B.dtx | Strauchweg | 13 |
| File_B.dtx | Igelallee | 22 |
The solution should be able to work in parallel. It can work per file since each file is small (around 3 MB) but I have a lot of them.
Thanks so much for hints.
What I currently have is just:
from pyspark.sql.functions import input_file_name
df1 = spark.read.text(filelist).withColumn("Filename", input_file_name())
Now my main problem is, how do I split the dataframe according to the rows ## Animal
and ## House
and aggregate it again to a dataframe to fullfil my task?
Upvotes: 0
Views: 909
Reputation: 3242
Assuming you know the format of the before hand and no two dataframes will have the same number of columns. Then you can do the following:
#
) from the dataset,
animals_df
as subset of rows from df in step 4 wherein the size of array from splitting is equal to 3 and extract the array values as columnshouse_df
as subset of rows from df in step 4 wherein the size of array from splitting is equal to 2 and extract the array values as columnsfrom pyspark.sql.functions import element_at, input_file_name, length, col as c, split, size
filelist = ["File_A.dtx", "File_B.dtx"]
df1 = spark.read.text(filelist).withColumn("Filename", input_file_name())
# STEP 1
comment_removed = df1.filter(~(c("value").startswith("#")))
# STEP 2
header_removed = comment_removed.filter(~(c("value").isin("Name, Type, isMammal", "Street, Number")))
# STEP 3
remove_empty_lines = header_removed.filter(length("value") > 0)
# STEP 4
processed_df = remove_empty_lines.withColumn("value", split("value", ",")).withColumn("Filename", element_at(split("Filename", "/"), -1)).cache()
# STEP 5
animals_df = processed_df.filter(size("value") == 3).selectExpr("Filename", "value[0] as Name", "value[1] as Type", "value[2] as isMammal")
animals_df.show()
"""
+----------+-----+---------+--------+
| Filename| Name| Type|isMammal|
+----------+-----+---------+--------+
|File_A.dtx| Hasi| Rabbit| yes|
|File_A.dtx|Birdi| Bird| no|
|File_A.dtx|Cathi| Cat| yes|
|File_B.dtx|Diddi| Dog| yes|
|File_B.dtx| Eli| Elephant| yes|
+----------+-----+---------+--------+
"""
# STEP 6
house_df = processed_df.filter(size("value") == 2).selectExpr("Filename", "value[0] as Street", "cast(value[1] as int) as Number")
house_df.show()
"""
+----------+-----------+------+
| Filename| Street|Number|
+----------+-----------+------+
|File_A.dtx|Main Street| 32|
|File_A.dtx|Buchengasse| 11|
|File_B.dtx| Strauchweg| 13|
|File_B.dtx| Igelallee| 22|
+----------+-----------+------+
"""
Upvotes: 1