Reputation: 13
I am trying to add an Array of values as a new column to the DataFrame.
Ex: Lets assume there is an Array(4,5,10) and a dataframe
+----------+-----+
| name | age |
+----------+-----+
| John | 32 |
| Elizabeth| 28 |
| Eric | 41 |
+----------+-----+
My requirement is to add the above array as a new column to the dataframe. My expected output is as follows:
+----------+-----+------+
| name | age | rank |
+----------+-----+------+
| John | 32 | 4 |
| Elizabeth| 28 | 5 |
| Eric | 41 | 10 |
+----------+-----+------+
I am trying if I can achieve this using rdd and zipWithIndex.
df.rdd.zipWithIndex.map(_.swap).join(array_rdd.zipWithIndex.map(_.swap))
This is resulting in something of this sort.
(0,([John, 32],4))
I want to convert the above RDD back to required dataframe. Let me know how to achieve this.
Are there any alternatives available for achieving the desired result other than using rdd and zipWithIndex? What is the best way to do it?
PS:
Context for better understanding:
I am using Xpress optimization suite to solve a mathematical problem. Xpress takes inputs interms of Arrays and also outputs the result in an Array. I get input as a DataFrame and I am extracting columns as Arrays(using collect) and passing to Xpress. Xpress outputs Array[Double] as solution. I want to add this solution back to the dataframe as a column and every value in the solution array corresponds to the row of the dataframe at its index i.e value at index 'n' of the output Array corresponds to 'n'th row of the dataframe
Upvotes: 1
Views: 2024
Reputation: 792
After the join just map the results to what you are looking for. You can convert this back to a dataframe after joining the RDDs.
val originalDF = Seq(("John", 32), ("Elizabeth", 28), ("Eric", 41)).toDF("name", "age")
val rank = Array(4, 5, 10)
// convert to Seq first
val rankDF = rank.toSeq.toDF("rank")
val joined = originalDF.rdd.zipWithIndex.map(_.swap).join(rankDF.rdd.zipWithIndex.map(_.swap))
val finalRDD = joined.map{ case (k,v) => (k, v._1.getString(0), v._1.getInt(1), v._2.getInt(0)) }
val finalDF = finalRDD.toDF("id", "name", "age", "rank")
finalDF.show()
/*
+---+---------+---+----+
| id| name|age|rank|
+---+---------+---+----+
| 0| John| 32| 4|
| 1|Elizabeth| 28| 5|
| 2| Eric| 41| 10|
+---+---------+---+----+
*/
The only alternate way that I can think of is to use the org.apache.spark.sql.functions.row_number()
window function. This essentially achieves the same thing by adding an increasing, consecutive row number to the dataframe.
The drawback with this is the large amount of data shuffle into one partition, since we need to have unrepeated row numbers for all rows in the dataframe. If your data is very large this can lead to an out of memory issue. (Note: this may not be applicable in your case, since you mentioned you are doing a collect on the data and have not mentioned any memory issues in this).
The approach of converting to an rdd
and using zipWithIndex
is an acceptable solution, but generally converting from dataframe to rdd is not recommended due to the performance difference of using an RDD instead of a dataframe.
Upvotes: 2