Reputation: 9805
Say I want to have polymorphic functions, here in a module.
module type NewHType1 = sig
type ('a, 'n) t
type t'
type ('n, 't) inj = { inj : 'a. ('a, 'n) t -> ('a, ('n, t') happ) app
type ('n, 't) prj = { prj : 'a. ('a, ('n, t') happ) app -> ('a, 'n) t }
val inj : ('n, 't) inj
val prj : ('n, 't) prj
end
Do I syntactically really have to have a polymorphic record type, with a superfluous record field ?
(I vaguely remember someone mentioning objects to avoid this extra noise (?))
Upvotes: 1
Views: 165
Reputation: 35210
You can encode existentials natively using GADT. For example, this is how you can encode higher-kinded polymorphism with GADT,
type ('p, 'f) app = ..
module Newtype1 (T : sig type 'a t end) () : sig
type 'a s = 'a T.t
type t
val inj : 'a s -> ('a, t) app
val prj : ('a, t) app -> 'a s
end = struct
type 'a s = 'a T.t
type t
type (_,_) app += App : 'a s -> ('a, t) app
let inj v = App v
let prj (App v) = v
end
module Newtype2 (T : sig type ('a,'b) t end) () : sig
type ('a, 'b) s = ('a, 'b) T.t
type t
val inj : ('a, 'b) s -> ('a, ('b, t) app) app
val prj : ('a, ('b, t) app) app -> ('a, 'b) s
end = struct
type ('a,'b) s = ('a,'b) T.t
type t
type (_,_) app += App : ('a,'b) s -> ('a, ('b,t) app) app
let inj v = App v
let prj (App v) = v
end
As a side note, you don't need to use records or anything else in the signature to specify that the type variable is polymorphic, as it is already polymorphic. I.e., you can describe your signature as simple as,
module type NewHType1 = sig
type ('a, 'n) t
type t'
val inj : ('a, 'n) t -> ('a, ('n, t') happ) app
val prj : ('a, ('n, t') happ) app -> ('a, 'n) t
end
It is because in value specifications (in module types) polymorphic variables denote polymorphic types, which is different from type constraints, which are used in value definitions, where type variables denote just variables that can have ground types, so if you want to prevent its unification with the ground type, you have to add a type annotation, e.g.,
module NewHType1 : sig
type ('a, 'n) t
type t'
val inj : ('a, 'n) t -> ('a, ('n, t') happ) app
val prj : ('a, ('n, t') happ) app -> ('a, 'n) t
end = struct
type ('a,'n) t and t'
let inj : 'a. ('a, 'n) t -> ('a, ('n, t') happ) app = fun _ -> assert false
let prj : 'a. ('a, ('n, t') happ) app -> ('a, 'n) t = fun _ -> assert false
end
To summarize, 'a. 'a -> 'a
type constraint generates the polymoprhic 'a -> 'a
type. You might find the following answer useful as well.
Upvotes: 1