Reputation: 51
How can I train a model with vectors/arrays as features? I seem to consistently getting errors when doing this...
My feature matrix would look something like this:
A B C Profile
0 1 4 4 [1,2,3,4]
1 2 4 5 [2,2,4,1]
while my target vector would look something like this:
0 [0,4,5,0]
1 [1,5,6,0]
etc etc but I'm having trouble with fit(x, y) when using linear_regression from sklearn. Here is the output to print(x) and print(y):
x:
Beams/Beam[0]/Parameters/Energy Beams/Beam[0]/Parameters/BunchPopulation Beams/Beam[0]/BunchShape/Parameters/LongitudinalSigmaLabFrame Simulation/NumberOfParticles initialXHist
0 25.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1 25.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
2 25.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
3 25.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
4 25.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
... ... ... ... ... ...
995 26.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
996 26.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
997 26.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
998 26.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
999 26.0 1.300000e+11 1.05 5000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1000 rows × 5 columns
y:
0 [8, 4, 6, 13, 5, 5, 10, 11, 15, 9, 19, 18, 16,...
1 [6, 5, 8, 8, 9, 12, 6, 20, 9, 20, 18, 12, 24, ...
2 [6, 6, 7, 8, 13, 10, 12, 7, 14, 14, 18, 24, 16...
3 [2, 5, 10, 3, 6, 8, 13, 12, 7, 18, 12, 20, 22,...
4 [5, 3, 5, 9, 8, 8, 8, 9, 14, 13, 10, 15, 21, 1...
...
995 [2, 9, 4, 5, 10, 5, 10, 15, 16, 13, 12, 13, 21...
996 [2, 3, 5, 5, 11, 15, 18, 15, 14, 13, 16, 17, 1...
997 [4, 5, 6, 8, 5, 7, 7, 26, 13, 16, 17, 16, 17, ...
998 [1, 3, 5, 7, 5, 6, 16, 10, 17, 12, 12, 18, 24,...
999 [3, 4, 8, 9, 8, 4, 14, 17, 11, 16, 7, 20, 14, ...
Name: finalXHist, Length: 1000, dtype: object
Can anyone advise? The error I get is:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
/tmp/ipykernel_826/1502489859.py in <module>
3
4 # Train the model using the training sets
----> 5 regr.fit(X_train, y_train)
6
7 # Make predictions using the testing set
/cvmfs/sft.cern.ch/lcg/views/LCG_101swan/x86_64-centos7-gcc8-opt/lib/python3.9/site-packages/sklearn/linear_model/_base.py in fit(self, X, y, sample_weight)
516 accept_sparse = False if self.positive else ['csr', 'csc', 'coo']
517
--> 518 X, y = self._validate_data(X, y, accept_sparse=accept_sparse,
519 y_numeric=True, multi_output=True)
520
/cvmfs/sft.cern.ch/lcg/views/LCG_101swan/x86_64-centos7-gcc8-opt/lib/python3.9/site-packages/sklearn/base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
431 y = check_array(y, **check_y_params)
432 else:
--> 433 X, y = check_X_y(X, y, **check_params)
434 out = X, y
435
/cvmfs/sft.cern.ch/lcg/views/LCG_101swan/x86_64-centos7-gcc8-opt/lib/python3.9/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
/cvmfs/sft.cern.ch/lcg/views/LCG_101swan/x86_64-centos7-gcc8-opt/lib/python3.9/site-packages/sklearn/utils/validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
869 raise ValueError("y cannot be None")
870
--> 871 X = check_array(X, accept_sparse=accept_sparse,
872 accept_large_sparse=accept_large_sparse,
873 dtype=dtype, order=order, copy=copy,
/cvmfs/sft.cern.ch/lcg/views/LCG_101swan/x86_64-centos7-gcc8-opt/lib/python3.9/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs)
61 extra_args = len(args) - len(all_args)
62 if extra_args <= 0:
---> 63 return f(*args, **kwargs)
64
65 # extra_args > 0
/cvmfs/sft.cern.ch/lcg/views/LCG_101swan/x86_64-centos7-gcc8-opt/lib/python3.9/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
671 array = array.astype(dtype, casting="unsafe", copy=False)
672 else:
--> 673 array = np.asarray(array, order=order, dtype=dtype)
674 except ComplexWarning as complex_warning:
675 raise ValueError("Complex data not supported\n"
ValueError: setting an array element with a sequence.
I've tried googling it but no luck so far, I guess there is something wrong with the way these two objects are set up.
Upvotes: 0
Views: 275
Reputation: 12602
The error is being raised for X
(third-to-last part of the traceback): you cannot have an array-valued feature. You need to do some feature engineering to generate a flat table of data to train on; whether that's flattening the arrays into individual features, or extracting some statistic based on those arrays, or something else depends on what those arrays mean (and would be a better question for datascience.SE or stats.SE).
Having arrays for y
may have a similar issue, but if treating them as individual outputs is what you're after, it becomes either a "multioutput" regression or a "multilabel" classification, which are handled by subsets of sklearn estimators.
Upvotes: 1