Reputation: 453
I have a dataframe, with Count
arranged in decending order, that looks something like this:
df = pd.DataFrame({'Topic': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M'],
'Count': [80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20]})
But with more than 50 rows.
I would like to create a pie chart for the top 10 topics and rest of them to be summed up and represent its percentange as label "Others
" in the pie chart. Is it possible to exclude the pie labels against each pie, and mention them seperately in a legend?
Thanking in anticipation
Upvotes: 1
Views: 1734
Reputation: 862481
Replace Topic
by Other
if no top N
in Series.where
and then aggregate sum
with Series.plot.pie
:
N = 10
df['Topic'] = df['Topic'].where(df['Count'].isin(df['Count'].nlargest(N)), 'Other')
s = df.groupby('Topic')['Count'].sum()
pie = df.plot.pie(y='Count', legend=False)
#https://stackoverflow.com/a/44076433/2901002
labels = [f'{l}, {s:0.1f}%' for l, s in zip(s.index, s / s.sum())]
plt.legend(bbox_to_anchor=(0.85, 1), loc='upper left', labels=labels)
Upvotes: 1
Reputation: 260335
You need to craft a new dataframe. Assuming your counts are sorted in descending order (if not, use df.sort_values(by='Count', inplace=True)
):
TOP = 10
df2 = df.iloc[:TOP]
df2 = df2.append({'Topic': 'Other', 'Count': df['Count'].iloc[TOP:].sum()},
ignore_index=True)
df2.set_index('Topic').plot.pie(y='Count', legend=False)
Example (N=10, N=5):
Percentages in the legend:
N = 5
df2 = df.iloc[:N]
df2 = df2.append({'Topic': 'Other', 'Count': df['Count'].iloc[N:].sum()}, ignore_index=True)
df2.set_index('Topic').plot.pie(y='Count', legend=False)
leg = plt.legend(labels=df2['Count'])
output:
Upvotes: 1
Reputation: 29
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'Topic': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M'],
'Count': [80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20]})
df.index = df.Topic
plot = df.plot.pie(y='Count', figsize=(5, 5))
plt.show()
Use documentation: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.pie.html
Upvotes: 0