Reputation: 401
I have a large data frame df
obtained by running a one-sided t-test on a different data frame:
df <- structure(list(uniqueID = c("101030", "101060"), res = list(structure(list(
statistic = c(t = 19), parameter = c(df = 20),
p.value = 0.00015, conf.int = structure(c(0.389,
Inf), conf.level = 0.95), estimate = c(`mean of x` = 0.412),
null.value = c(mean = 0.22), stderr = 0.01,
alternative = "greater", method = "One Sample t-test", data.name = "mean"), class = "htest"),
structure(list(statistic = c(t = 29), parameter = c(df = 20),
p.value = 4.5e-05, conf.int = structure(c(0.569,
Inf), conf.level = 0.95), estimate = c(`mean of x` = 0.600),
null.value = c(mean = 0.22), stderr = 0.01,
alternative = "greater", method = "One Sample t-test",
data.name = "mean"), class = "htest"))), row.names = c(NA,
-2L), class = c("tbl_df", "tbl", "data.frame"))
I want to create a new data frame df_new
where I basically take the uniqueID
value as well as the p.value
:
df_new <- data.frame(uniqueID = c(101030, '101060'), pval = c(0.00015, 4.5e-05))
I know there must be a way to iterate over this data frame. For example, I can access the p.value
by df[[2]][[i]]$p.value
where i
is the row number, but I'm at a lost for how to iterate over every row and save this output to either a list or new data frame. Any help would be greatly appreciated.
Upvotes: 3
Views: 71
Reputation: 25313
Another possible solution:
library(tidyverse)
df %>%
rowwise %>%
mutate(pvalue = res %>% flatten %>% .["p.value"] %>% unlist, res = NULL)
#> # A tibble: 2 × 2
#> # Rowwise:
#> uniqueID pvalue
#> <chr> <dbl>
#> 1 101030 0.00015
#> 2 101060 0.000045
Or using purrr
:
map_dbl(df$res, ~ .x$p.value) %>% bind_cols(uniqueID = df[,1], pvalue=.)
Upvotes: 2
Reputation: 51
We can also hoist
the p.value
column up one nested level:
library(tidyr)
library(dplyr)
hoist(df, .col = res, "p.value") %>%
select(uniqueID, p.value)
#> # A tibble: 2 × 2
#> uniqueID p.value
#> <chr> <dbl>
#> 1 101030 0.00015
#> 2 101060 0.000045
Upvotes: 3
Reputation: 20240
If I understand what you are asking, you have a list, and the easiest way is to iterate with the apply
functions:
df_new <- data.frame(
uniqueID = df$uniqueID,
pval = sapply(df$res, function(x) x[["p.value"]])
)
Output:
r$> df_new
uniqueID pval
1 101030 1.5e-04
2 101060 4.5e-05
Upvotes: 3