Reputation: 1361
I have the following dataframe df
:
A B Var Value
0 A1 B1 T1name T1
1 A2 B2 T1name T1
2 A1 B1 T2name T2
3 A2 B2 T2name T2
4 A1 B1 T1res 1
5 A2 B2 T1res 1
6 A1 B1 T2res 2
7 A2 B2 T2res 2
I now want to 'half' my dataframe because Var
contains variables that should not go under the same column. My intended outcome is:
A B Name Value
0 A1 B1 T1 1
1 A2 B2 T1 1
2 A1 B1 T2 2
3 A2 B2 T2 2
What should I use to unpivot this correctly?
Upvotes: 0
Views: 98
Reputation: 26676
There are different options available looking at the df. Regex seems to be on top of the list. If regex doesn't work, maybe think of redefining your problem:
Filter Value
by dtype, replace unwanted characters in df and rename columns. Code below
df[df['Value'].str.isnumeric()].replace(regex=r'res$', value='').rename(columns={'Var':'Name'})
A B Name Value
4 A1 B1 T1 1
5 A2 B2 T1 1
6 A1 B1 T2 2
7 A2 B2 T2 2
Upvotes: 1
Reputation: 14093
Just filter where the string contains res
and assign a new column with the first two characters of the var columns
df[df['Var'].str.contains('res')].assign(Name=df['Var'].str[:2]).drop(columns='Var')
A B Value Name
4 A1 B1 1 T1
5 A2 B2 1 T1
6 A1 B1 2 T2
7 A2 B2 2 T2
Note that this creates a slice of the original DataFrame and not a copy
Upvotes: 1
Reputation: 24568
then :
df = df[~df['Var'].isin(['T1name','T2name'])]
output :
A B Var Value
4 A1 B1 T1res 1
5 A2 B2 T1res 1
6 A1 B1 T2res 2
7 A2 B2 T2res 2
Upvotes: 1