Reputation: 1402
I have a GeoDataFrame
with a geometry column (of polygons) and few other columns used for plotting polygons and their marker popups on the map. I exported this dataframe by using gdf.__geo_interface__
as a column geo
and other attributes to a CSV file using to_csv
on the complete DataFrame
.
The geo
column looks like
{'type': 'FeatureCollection', 'features': [{'id': '1', 'type': 'Feature', 'properties': {...}}
How can I read back from the CSV file and get the GeoDataFrame
using the CSV? Specifically, how can I create back the original columns (polygons and attributes) that I had in the GeoDataFrame
?
Upvotes: 1
Views: 1550
Reputation: 11474
Given the following situation:
from shapely.geometry import Point
d = {'col1': ['name1', 'name2'], 'geometry': [Point(1, 2), Point(2, 1)]}
gdf = geopandas.GeoDataFrame(d, crs="EPSG:4326")
gdf
you can define a function that will flatten any json
by:
def flatten_nested_json_df(df):
df = df.reset_index()
s = (df.applymap(type) == list).all()
list_columns = s[s].index.tolist()
s = (df.applymap(type) == dict).all()
dict_columns = s[s].index.tolist()
while len(list_columns) > 0 or len(dict_columns) > 0:
new_columns = []
for col in dict_columns:
horiz_exploded = pd.json_normalize(df[col]).add_prefix(f'{col}.')
horiz_exploded.index = df.index
df = pd.concat([df, horiz_exploded], axis=1).drop(columns=[col])
new_columns.extend(horiz_exploded.columns) # inplace
for col in list_columns:
#print(f"exploding: {col}")
df = df.drop(columns=[col]).join(df[col].explode().to_frame())
new_columns.append(col)
s = (df[new_columns].applymap(type) == list).all()
list_columns = s[s].index.tolist()
s = (df[new_columns].applymap(type) == dict).all()
dict_columns = s[s].index.tolist()
return df
Now, you used geo = gdf.__geo_interface__
which returned something like:
{'type': 'FeatureCollection',
'features': [{'id': '0',
'type': 'Feature',
'properties': {'col1': 'name1'},
'geometry': {'type': 'Point', 'coordinates': (1.0, 2.0)},
'bbox': (1.0, 2.0, 1.0, 2.0)},
{'id': '1',
'type': 'Feature',
'properties': {'col1': 'name2'},
'geometry': {'type': 'Point', 'coordinates': (2.0, 1.0)},
'bbox': (2.0, 1.0, 2.0, 1.0)}],
'bbox': (1.0, 1.0, 2.0, 2.0)}
Note that I called it geo
. Then, do this:
json = json.dumps(geo)
df = pd.json_normalize(geo)
flatten_nested_json_df(df)
Which will give you:
index type bbox features.id features.type \
0 0 FeatureCollection (1.0, 1.0, 2.0, 2.0) 0 Feature
0 0 FeatureCollection (1.0, 1.0, 2.0, 2.0) 1 Feature
features.bbox features.properties.col1 features.geometry.type \
0 (1.0, 2.0, 1.0, 2.0) name1 Point
0 (2.0, 1.0, 2.0, 1.0) name2 Point
features.geometry.coordinates
0 (1.0, 2.0)
0 (2.0, 1.0)
Upvotes: 1