Reputation: 33
I got data with columns: startpoint, endpoint, data.
I want to merge the startpoint, endpoint rows if they contain the same data (to both directions) and add another columns of the extra data.
for example starting with:
startpoint | endpoint | data |
---|---|---|
A | B | 1 |
C | D | 2 |
B | A | 3 |
D | C | 4 |
TO:
startpoint | endpoint | data_1 | data_2 |
---|---|---|---|
A | B | 1 | 3 |
C | D | 2 | 4 |
Is there quick way to do it on pandas?
Thanks.
Upvotes: 3
Views: 208
Reputation: 13821
Get matching values values between startpoint and endpoint and do the necessary conversions for your data types. You can then sort the values in your dataframe and use a groupby
:
# Matching values between startpoint + endpoint
df['start_end_grouped'] = [sorted(''.join(val).replace(',','')) for val in zip(df['startpoint'], df['endpoint'])]
# Conversions
df['data'] = df['data'].str.replace(',','').astype(float)
df['start_end_grouped'] = df['start_end_grouped'].astype(str)
# Result
df[['data','start_end_grouped']].sort_values(by=['start_end_grouped','data'])\
.groupby('start_end_grouped',as_index=False).agg(list)
start_end_grouped data
0 ['A', 'B'] [1.0, 3.0]
1 ['C', 'D'] [2.0, 4.0]
Upvotes: 0
Reputation: 8219
First we groupby on an index where we sort values in startpoint, endpoint to make sure we get match permutations
match_groups = ['_'.join(sorted(t)) for t in zip(df['startpoint'],df['endpoint'])]
df2 = df.groupby(match_groups, as_index = False).agg({'startpoint':'first', 'endpoint':'first', 'data':list})
df2
looks like this:
startpoint endpoint data
-- ------------ ---------- ------
0 A B [1, 3]
1 C D [2, 4]
if we want data
in separate columns then we apply
pd.Series
(and rename columns to desired labels)
(df2.set_index(['startpoint', 'endpoint'])['data']
.apply(pd.Series).rename(columns = lambda n:f'data_{n+1}')
.reset_index()
)
output:
startpoint endpoint data_1 data_2
-- ------------ ---------- -------- --------
0 A B 1 3
1 C D 2 4
Upvotes: 3
Reputation: 408
If I've understood your question correctly, the following code should do what you want -
data.index = [hash(frozenset([x,y])) for x, y in zip(data["startpoint"], data["endpoint"])]
result = data.groupby(data.index)["data"].apply(list).to_frame()
result = result["data"].apply(pd.Series)
result.columns = ["data1", "data2"]
result = pd.merge(data[["startpoint", "endpoint"]], result, left_index=True, right_index=True)
result = result[~result.index.duplicated(keep='first')]
The variable data
is the original DataFrame. Please let me know if anything is unclear.
Upvotes: 1
Reputation: 19
Your best bet is to use pd.merge(). Pandas official website shows how to use pd.merge() functions.
https://pandas.pydata.org/docs/dev/user_guide/merging.html
Upvotes: 0