Reputation: 165
I want to prove ~~(P \/ ~P)
in Coq, which sounds somehow trivial... However I do not know where to go since there is not any single hypothesis.
I have written the following code which is not working, since it is giving the following exception [ltac_use_default] expected after [tactic] (in [tactic_command]).
Parameter P: Prop.
Section r20.
Lemma regra1: ~~(P \/ ~P).
Proof.
intro.
- cut P.
- cut ~P
Qed.
End r20.
Upvotes: 0
Views: 421
Reputation: 1625
It is little tricky one. Here is one way to prove it.
Parameter P : Prop.
Section r20.
Lemma regra1: ~~(P \/ ~P).
Proof.
unfold not. intros H1.
apply H1. right.
intros H2.
apply H1. left.
exact H2.
Qed.
End r20.
Upvotes: 0