Reputation: 39858
This question is a follow-up to my previous question on recursive random sampling Efficient recursive random sampling. The solutions in that thread work fine when the groups are of identical size or when a fixed number of samples per group is required. However, let's imagine a dataset as follows;
ID1 ID2
1 A 1
2 A 6
3 B 1
4 B 2
5 B 3
6 C 4
7 C 5
8 C 6
9 D 6
10 D 7
11 D 8
12 D 9
where we want to randomly sample up to n ID2 for each ID1, and doing so recursively. Recursively here means that we are moving from the first ID1 to the last ID1, and if an ID2 was already sampled for an ID1, then it should not be used for a subsequent ID1. Let's say n = 2, then expected results would be as follows;
ID1 ID2
1 A 1
2 A 6
4 B 2
5 B 3
6 C 4
7 C 5
11 D 8
12 D 9
What can happen beyond the situation shown in the example;
seq(ID1)
.Sample df;
df <- structure(list(ID1 = c("A", "A", "B", "B", "B", "C", "C", "C",
"D", "D", "D", "D"), ID2 = c(1, 6, 1, 2, 3, 4, 5, 6, 6, 7, 8,
9)), class = "data.frame", row.names = c(NA, -12L))
Upvotes: 6
Views: 412
Reputation: 101189
Here is a base R option using dynamic programming (DP)
d <- table(df)
nms <- dimnames(d)
res <- list()
for (i in nms$ID1) {
idx <- which(d[i, ] > 0)
if (length(idx) >= 2) {
j <- sample(idx, 2)
res[[i]] <- nms$ID2[j]
d[, j] <- 0
}
}
dfout <- type.convert(
setNames(rev(stack(res)), names(df)),
as.is = TRUE
)
which gives
ID1 ID2
1 A 6
2 A 1
3 B 2
4 B 3
5 C 4
6 C 5
7 D 7
8 D 8
For the case with used ID2
already, e.g.,
> (df <- structure(list(ID1 = c(
+ "A", "A", "B", "B", "B", "C", "C", "C",
+ "D", "D", "D", "D"
+ ), ID2 = c(
+ 1, 3, 1, 2, 3, 3, 4, 5, 4, 5, 6, .... [TRUNCATED]
ID1 ID2
1 A 1
2 A 3
3 B 1
4 B 2
5 B 3
6 C 3
7 C 4
8 C 5
9 D 4
10 D 5
11 D 6
12 D 1
we will obtain
ID1 ID2
1 A 1
2 A 3
3 C 5
4 C 4
Upvotes: 1
Reputation: 79208
I dont know whether I am oversimplifying the problem. Take a look at the following and see whether it works in your case:
library(tidyverse)
df %>%
group_split(ID1)%>%
reduce(~ bind_rows(.x, .y) %>%
filter(!duplicated(ID2))%>%
group_by(ID1)%>%
slice_sample(n=2) %>%
ungroup,
.init = slice_sample(.[[1]], n=2))
# A tibble: 8 x 2
ID1 ID2
<chr> <dbl>
1 A 1
2 A 6
3 B 2
4 B 3
5 C 4
6 C 5
7 D 9
8 D 8
Disclaimer: NOt vectorized, thus inefficient
Upvotes: 0
Reputation: 1492
The following function seems to give what you are after. Basically, it loops through each group of ID1
and selects the rows where the corresponding ID2
has not been sampled. Then it selects the distinct rows (in the case that some group of ID1
has duplicate ID2
values. The sample size will be the minimum of either n
, or the number of rows for that group.
sample <- function(df, n) {
`%notin%` <- Negate(`%in%`)
groups <- unique(df$ID1)
out <- data.frame(ID1 = character(), ID2 = character())
for (group in groups) {
options <- df %>%
filter(ID1 == group,
ID2 %notin% out$ID2)
chosen <- sample_n(options,
size = min(n, nrow(options))) %>%
distinct()
out <- rbind(out, chosen)
}
out
}
set.seed(123)
sample(df, 2)
ID1 ID2
1 A 1
2 A 6
3 B 2
4 B 3
5 C 4
6 C 5
7 D 8
8 D 9
Case where a group of ID1
has ID2
s that were already used up:
Input:
# A tibble: 10 × 2
ID1 ID2
<chr> <dbl>
1 A 1
2 A 3
3 B 1
4 B 3
5 C 5
6 C 6
7 C 7
8 C 7
9 D 10
10 D 20
Output:
sample(df2, 2)
# A tibble: 6 × 2
ID1 ID2
<chr> <dbl>
1 A 3
2 A 1
3 C 6
4 C 7
5 D 20
6 D 10
Upvotes: 1