Reputation: 273
Consider a standard implementation of class Link of LinkedList in c++.
I want to know if its a good idea to overload the operator ++ in this class (I noticed that I repeat the line link = link->next;
a lot when dealing with linked lists, so I thought it would be easier if I overload this operator). Here's my implementation:
#ifndef LINK_H
#define LINK_H
#include <iostream>
#include "typeinfo.h"
#include "LinkedList.h"
template <class T> class LinkedList; //|Forward declaration of the generic LinkedList.
template <class T>
class Link
{
public:
//|-------------------- Constructors --------------------
Link(T data): m_data(data), next(NULL){}
//|-------------------- Methods --------------------
T getData(){
return m_data;
}
T& getNext(){
return next;
}
void setNext(Link* newLink){
next = newLink;
}
void setData(T data){
m_data = data;
}
//|-------------------- Operator overload --------------------
bool operator==(Link& other){
if(this->m_data == other.m_data)
return true;
return false;
}
void operator++(){ //Is this okay?
this = this->next;
}
//|-------------------- Friend functions --------------------
friend std::ostream& operator<<(std::ostream& out,const Link<T>& link){
out<<link.m_data;
return out;
}
//|-------------------- Destructor --------------------
virtual ~Link(){}
protected:
public:
//|-------------------- Private fields --------------------
T m_data;
Link<T>* next;
friend class LinkedList<T>;
};
#endif // LINK_H
I guess the way that I tried to do it is not good (it does work as I expected). I tried to use this
because I want it to work on pointer that is pointing to a certain link.
So, is it a good idea? if it is, what is the right way to implement it?
Thanks.
Upvotes: 0
Views: 377
Reputation: 15277
Maybe you should refactor your design and the code.
The link, or better said the Node, is normally implemented as an own class. An this class is embedded in the LinkedList class. And that Node class should be completely encapsulated and not shown to the outside world.
The user of the class will just deal with the data value. All the pointer stuff should be hidden.
And to be able to iterate over your class, which is similar to a std::forward_list
, you can add ultra simple iterator functionality. Most functions can be implemented using a one liner.
I will show you below an ultra simple implementation example. This may be extended easily according to your needs.
From that you may take over some ideas to improve your design.
With the added iterator functionality, you may use range based for loops and std:: algorithms and all the like.
Please have a look and ask questions, if there should be something unclear.
#include <iostream>
#include <iterator>
#include <initializer_list>
#include <algorithm>
// Very simple implementation of a forward list
template <class T>
class SinglyLinkedList {
// The node
struct Node {
T data{}; // Data. Would normally be a templated argument
Node* next{}; // And the pointer to the next node
Node(const T& i, Node* n = nullptr) : data(i), next(n) {}; // Simple constructor to set a value and next pointer
};
Node* head{}; // This is the start of the list
// It would be advisable to have a tail pointer. We use the more inefficient approach here
Node* getLast() const { Node* n{ head }; while (n and n->next) n = n->next; return n; }
public:
// Constructor / Destructor --------------------------------------------------------------------------------------------------------
~SinglyLinkedList() { clear(); }
// Default constuctor
SinglyLinkedList() {} // Default
// From an initialization list
SinglyLinkedList(const std::initializer_list<T>& il) { clear(); for (const T& i : il) push_back(i); } // From initializer list
// Copy constructor
SinglyLinkedList(const SinglyLinkedList& other) { clear(); for (const T &i : other) push_back(i); }
// Move constructor. Will steal the elements from the other
SinglyLinkedList(SinglyLinkedList&& other) noexcept { head = other.head; other.head = nullptr; }
// Assignment operator
SinglyLinkedList& operator = (const SinglyLinkedList& other) { clear(); for (const T &i : other) push_back(i); }
// Move assignment operator
SinglyLinkedList& operator = (SinglyLinkedList&& other) { head = other.head; other.head = nullptr; }
// Housekeeping --------------------------------------------------------------------------------------------------------------
void clear() { Node* tmp{ head }; while (tmp) { Node* toDelete{ tmp }; tmp = tmp->next; delete toDelete; } head = nullptr; }
int empty() const { return head == nullptr; }
int size() const { int k{}; Node* n{ head }; while (n) { ++k; n = n->next; } return k; }
// Modify content --------------------------------------------------------------------------------------------------------------
void push_front(const T& i) { Node* n = new Node(i); n->next = head; head = n; };
void push_back(const T& i) { Node* n = new Node(i); Node* l = getLast(); if (l) l->next = n; else head = n; }
void pop_front() { if (head) { Node* tmp = head->next; delete head; head = tmp; } }
void pop_back() { // This is a little bit more difficult in a singly linked list
if (head) {
Node* n{ head }, * previous{};
while (n and n->next) {
previous = n;
n = n->next;
}
delete n;
if (previous)
previous->next = nullptr;
else
head->next = nullptr;
}
}
// Access elements --------------------------------------------------------------------------------
T front() const { return head ? head->data : 0; };
T back() const { Node* n = getLast(); return n ? n->data : 0; }
// Add iterator properties to class ---------------------------------------------------------------
struct iterator { // Local class for iterator
Node* iter{}; // Iterator is basically a pointer to the node
// Define alias names necessary for the iterator functionality
using iterator_category = std::forward_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;
// Constructor
iterator() {}
iterator(Node* n) : iter(n) {}
// Dereferencing
reference operator *() const { return iter->data; }
pointer operator ->() const { return &iter->data; }
// Aithmetic operations
iterator& operator ++() { if (iter) iter = iter->next; return *this; }
iterator operator ++(int) { iterator temp{ *this }; ++* this; return temp; }
iterator operator +(const difference_type& n) const { iterator temp{ *this }; difference_type k{ n }; while (k--)++temp; return temp; }
iterator& operator +=(const difference_type& n) { difference_type k{ n }; while (k--)++* this; return *this; };
// Comparison
bool operator != (const iterator& other) const { return iter != other.iter; }
bool operator == (const iterator& other) const { return iter == other.iter; }
bool operator < (const iterator& other) const { return iter < other.iter; }
bool operator > (const iterator& other) const { return iter > other.iter; }
bool operator <= (const iterator& other) const { return iter <= other.iter; }
bool operator >= (const iterator& other) const { return iter >= other.iter; }
// Difference. Also complicated, because no random access
difference_type operator-(const iterator& other) const {
difference_type result{};
Node* n{ iter };
while (n and n != other.iter) {
++result;
n = n->next;
}
return result;
}
};
// Begin and end function to initialize an iterator
iterator begin() const { return iterator(head); }
iterator end() const { return iterator(); }
// Functions typcical for forward lists ----------------------------------------------------------------------
// Easy, becuase we can operate form the current iterator and do not need the "previous" element
iterator insertAfter(iterator& pos, const T& i) {
iterator result{};
if (pos.iter and pos.iter->next) {
Node* n = new Node(i, pos.iter->next);
pos.iter->next = n;
result = n;
}
return result;
}
iterator eraseAfter(iterator& pos) {
iterator result{};
if (pos.iter and pos.iter->next) {
Node* tmp = pos.iter->next->next;
delete pos.iter->next;
pos.iter->next = tmp;
result = pos.iter->next;
}
return result;
}
};
// Test/Driver Code
int main() {
// Example for initilizer list
SinglyLinkedList<int> sllbase{ 5,6,7,8,9,10,11,12,13,14,15 };
// Show move constructor
SinglyLinkedList<int> sll(std::move(sllbase));
// Add some values in the front
sll.push_front(4);
sll.push_front(3);
sll.push_front(2);
sll.push_front(1);
// Delete 1st element (Number 1)
sll.pop_front();
// Delete last element
sll.pop_back();
// Use a std::algorithm on our custom linked list. Works because we have an interator
SinglyLinkedList<int>::iterator iter = std::find(sll.begin(), sll.end(), 8);
// Now add an element after 8
iter = sll.insertAfter(iter, 88);
// End delete the 9
iter = sll.eraseAfter(iter);
// Use range based for loop. Works because, we have iterators
for (int i : sll)
std::cout << i << ' ';
}
Upvotes: 1