Reputation: 1841
I'm running the following code to create an endpoint with a preexisting model:
from sagemaker.tensorflow import serving
sagemaker_session = sagemaker.Session()
clf_sm_model = serving.Model(model_data='s3://mybucket/mytrainedmodel/model.tar.gz',
entry_point="inference.py",
source_dir="inf_source_dir",
role=get_execution_role(),
framework_version='1.14',
sagemaker_session=sagemaker_session)
However this create a copy of the model into the default sagemaker bucket. How can I pass a custom path? I've tried model_dir, and output_path but neither are accepted as parameters
Upvotes: 0
Views: 679
Reputation: 1314
The SageMaker Python SDK repackages your model to include your entry_point
and source_dir
files and uploads this "new" tar ball to the SageMaker default bucket.
You can change this behavior by setting the default_bucket
in your sagemaker_session
as follows:
sagemaker_session = sagemaker.Session(default_bucket="<mybucket>")
clf_sm_model = serving.Model(model_data='s3://mybucket/mytrainedmodel/model.tar.gz',
.
.
sagemaker_session=sagemaker_session)
.
)
Upvotes: 4