Reputation: 71
I need some help/suggestions/guidance on how I can optimize my code. The code works, but with huge data it has been running for almost a day. My data has ~ 2 million rows , with sample data ( few thousdand rows) it works .My sample data format is show below:
index A B
0 0.163 0.181
1 0.895 0.093
2 0.947 0.545
3 0.435 0.307
4 0.021 0.152
5 0.486 0.977
6 0.291 0.244
7 0.128 0.946
8 0.366 0.521
9 0.385 0.137
10 0.950 0.164
11 0.073 0.541
12 0.917 0.711
13 0.504 0.754
14 0.623 0.235
15 0.845 0.150
16 0.847 0.336
17 0.009 0.940
18 0.328 0.302
What I want to do : Given the above data set I want to bucket/bin each row into different buckets/bins based on values of A and B.Each index can only lie in one bin . To do this I have discretized A and B from 0 to 1( step size of 0.1). My bins for A look like this:
listA = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]
similar for B.
listB = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]
So total I have 10 * 10 = 100 bin So in total there are 100 bins , bin1 = (A,B) = (0,0) , bin 2 = (0,0.1) , bin 3 = (0,0.2)....bin 10 = (0,1), bin 11 = (0.1,0).....bin 20 = (0.1,1) ..... bin(100) = (1,1) Then for each index, I am checking which bin each index lies in running a for loop shown below :
for index in df.index:
sumlist = []
for A in listA:
for B in listB:
filt_data = df[(df['A'] > A) & (df['A'] < A) & (df['B'] > B) & (df_input['B'] < B)]
data_len = len(filt_data)
sumlist = sumlist.append(data_len)
df_sumlist = pd.DataFrame([sumlist])
df_output = pd.concat([df_output , df_sumlist ] , axis = 0)
I tried using the pandas cut function for binning but it appears that it works for one column.
Expected output
index A B bin1 bin2 bin3 bin4 bin5 ...bin 23.. bin100
0 0.163 0.181 0 0 0 0 0 1 0
1 0.895 0.093
2 0.947 0.545
3 0.435 0.307
4 0.021 0.152
5 0.486 0.977
6 0.291 0.244
7 0.128 0.946
8 0.366 0.521
9 0.385 0.137
10 0.950 0.164
11 0.073 0.541
12 0.917 0.711
13 0.504 0.754
14 0.623 0.235
15 0.845 0.150
16 0.847 0.336
17 0.009 0.940
18 0.328 0.302
I do care about other bins even if they are zero, for eg: index 0 might lie in bin 23 so for index 0 I will have 1 in bin 23 and 0 in all other 99 bins. Similarly for index 1, it might lie in bin 91 , so expected to have 1 in bin 91 and all bins 0 for index.
Thanks for taking the time to read and help me with this, appreciate your help. Please let me know if I am missing anything or need to clarify things.
Upvotes: 0
Views: 90
Reputation: 1352
You were on the right track! pd.cut
is the way to go. I'm using the Series categories to create your final bins:
import pandas as pd
import numpy as np
# Generate sample df
df = pd.DataFrame({'A': np.random.uniform(size=20), 'B': np.random.uniform(size=20)})
# Create bins for each column
df["bin_A"] = pd.cut(df["A"], bins=np.linspace(0, 1, 11))
df["bin_B"] = pd.cut(df["B"], bins=np.linspace(0, 1, 11))
# Create a combined bin using category codes for each binned column
df["combined_bin"] = df["bin_A"].cat.codes * 10 + df["bin_B"].cat.codes
df["combined_bin"] = pd.Categorical(df["combined_bin"], categories=range(100))
# Loop over categories to create new columns
for i in df["combined_bin"].cat.categories:
df[f"bin_{i}"] = (df["combined_bin"] == i).astype(int)
EDIT – Generalized solution:
The important part here is defining all possible combinations of bins in both columns, using itertools.product
:
import pandas as pd
import numpy as np
import itertools
df = pd.DataFrame({'A': np.random.uniform(size=20), 'B': np.random.uniform(size=20)})
# Change number of bins here or update the `bins` parameter
N_BINS_A = 10
N_BINS_B = 10
df["bin_A"] = pd.cut(df["A"], bins=np.linspace(0, 1, N_BINS_A + 1))
df["bin_B"] = pd.cut(df["B"], bins=np.linspace(0, 1, N_BINS_B + 1))
# Specify all possible bin combinations to use for columns
bin_A_bin_B_combinations = itertools.product(
df['bin_A'].cat.categories,
df['bin_B'].cat.categories,
)
# Loop over possible combinations and mark matches
for i, (bin_A, bin_B) in enumerate(bin_A_bin_B_combinations):
df[f"bin_{i}"] = (
(df["bin_A"] == bin_A) & (df["bin_B"] == bin_B)
).astype(int)
Upvotes: 1
Reputation: 149175
You could probably use cut
on each column and then combine the results to find the category of the row
acat = pd.cut(df['A'], [.1*i for i in range(11)],
labels = range(10), include_lowest=True)
bcat = pd.cut(df['B'], [.1*i for i in range(11)],
labels = range(10), include_lowest=True)
cat = 1 + bcat.cat.codes + acat.cat.codes * 10
With your sample data, I get
0 12
1 81
2 96
3 44
4 2
5 50
6 23
7 20
8 36
9 32
10 92
11 6
12 98
13 58
14 63
15 82
16 84
17 10
18 34
dtype: int8
get_dummies
and reindex
will give the wide columns
w = pd.get_dummies(cat).reindex(columns=list(range(1,101))).fillna(0).astype('int8')
We only have to concat it to the original dataframe:
pd.concat([df, w], axis=1)
to get as expected:
index A B 1 2 3 4 5 6 ... 92 93 94 95 96 97 98 99 100
0 0 0.163 0.181 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
1 1 0.895 0.093 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
2 2 0.947 0.545 0 0 0 0 0 0 ... 0 0 0 0 1 0 0 0 0
3 3 0.435 0.307 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
4 4 0.021 0.152 0 1 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
5 5 0.486 0.977 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
6 6 0.291 0.244 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
7 7 0.128 0.946 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
8 8 0.366 0.521 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
9 9 0.385 0.137 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
10 10 0.950 0.164 0 0 0 0 0 0 ... 1 0 0 0 0 0 0 0 0
11 11 0.073 0.541 0 0 0 0 0 1 ... 0 0 0 0 0 0 0 0 0
12 12 0.917 0.711 0 0 0 0 0 0 ... 0 0 0 0 0 0 1 0 0
13 13 0.504 0.754 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
14 14 0.623 0.235 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
15 15 0.845 0.150 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
16 16 0.847 0.336 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
17 17 0.009 0.940 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
18 18 0.328 0.302 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0
Upvotes: 0