Reputation: 45
I am making a script to rotate my camera around a sphere but I need to clamp the y axis so the camera does not co over the polls of the sphere I am using rotate around to move my camera.
Thanks!
My current code
public float sensitivity = 1;
public float moveSpeed = 10;
public float maxUp = 45f;
public float maxDown = -45f;
public Transform target;
void Update()
{
transform.LookAt(target);
float HorizontalAxis = Input.GetAxis("Horizontal") * moveSpeed;
float VerticalAxis = Input.GetAxis("Vertical") * moveSpeed;
if (HorizontalAxis >= 1 || VerticalAxis >= 1 || HorizontalAxis <= -1 || VerticalAxis <= -1)
{
Quaternion targetPos = transform.rotation;
targetPos.x += HorizontalAxis * sensitivity;
targetPos.y += VerticalAxis * sensitivity;
transform.RotateAround(target.position, Vector3.left, targetPos.y);
transform.RotateAround(target.position, Vector3.up, targetPos.x);
}
}
Upvotes: 0
Views: 934
Reputation: 90580
Your code makes no sense to begin with.
You do
Quaternion targetPos = transform.rotation;
targetPos.x += HorizontalAxis * sensitivity;
targetPos.y += VerticalAxis * sensitivity;
Just to then use these as parameters in
transform.RotateAround(target.position, Vector3.left, targetPos.y);
transform.RotateAround(target.position, Vector3.up, targetPos.x);
A Quaternion
has not three but four components x
, y
, z
and w
and they move in ranges between -1
and 1
. You never touch the individual component of a Quaternion
except you really know exactly what you are doing!
You rather simply want to use the HorizontalAxis
and VerticalAxis
directly as the parameters to RotateAround
.
You could rather simply remember and clamp how much you already rotated like e.g.
private float rotatedY;
private void Update()
{
transform.LookAt(target);
// why two different multipliers anyway though?
var HorizontalAxis = Input.GetAxis("Horizontal") * moveSpeed * sensitivity;
var VerticalAxis = Input.GetAxis("Vertical") * moveSpeed * sensitivity;
// would a positive rotation exceed the maxUp?
if(rotatedY + VerticalAxis > maxUp)
{
// then rotate only so much that you terminate exactly on maxUp
VerticalAxis = maxUp - rotatedY;
}
// would a negative rotation exceed the maxDown?
else if(rotatedY + VerticalAxis < maxDown)
{
// then you rotate only that much that you terminate exactly on maxDown
VerticalAxis = maxDown - rotatedY;
}
transform.RotateAround(target.position, Vector3.left, VerticalAxis);
transform.RotateAround(target.position, Vector3.up, HorizontalAxis);
// sum up how much you already rotated vertically
rotatedY += VerticalAxis;
}
Upvotes: 1